Self Studies

Polynomials Test - 47

Result Self Studies

Polynomials Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    the values of a& b so that the polynomial $${ x }^{ 3 }-{ ax }^{ 2 }-13x+b\quad is\quad divisible\quad by\quad \left( x-1 \right) \& \left( x+3 \right) $$ are 
  • Question 2
    1 / -0
    Find the sum of all possible values of $$C$$ for which the expression $${x^3} + 3{x^2} - 9x + c$$ can be expressed as the product of three factors, two of which are identical and monic.
    Solution

  • Question 3
    1 / -0
    The real number 'K' for which teh equation $${\text{2}}{{\text{x}}^3} + 3x + K = 0$$ has to distinct real roots in [0, 1]
  • Question 4
    1 / -0
    If two roots of the equation $$ x ^ { 3 } - 3 x + 2 = 0 $$ are same, then the roots will be
    Solution

  • Question 5
    1 / -0
    The expression $$(x+(x^4-1)^{1/2})^4 + (x-(x^4-1)^{1/2})^4$$ is a polynomial of degree
    Solution

  • Question 6
    1 / -0
    If $$x^5-5qx+4r$$ is divisible by $$(x-c)^2$$ then which of the following must hold true $$\forall q,r,c \in R?$$
  • Question 7
    1 / -0
    The quadratic polynomials $$f(x) = ax^2 + bx + c $$ has real zeroes $$\alpha$$ and $$\beta$$ . If $$a$$ , $$b$$ , $$c$$ are real and of the same sign then 
    Solution

  • Question 8
    1 / -0
    If $$\alpha ,\beta ,\gamma$$ are zeroes of the polynomial $${ x }^{ 3 }-x-1$$, then the value of $$\frac { 1+\alpha  }{ 1-\alpha  } +\frac { 1+\beta  }{ 1-\beta  } +\frac { 1+\gamma  }{ 1-\gamma  }$$ is?
    Solution

  • Question 9
    1 / -0
    Which of the following is a perfect cube?
    Solution
    $${\textbf{Step -1: Define a perfect cube}}{\textbf{.}}$$
                     $${\text{It is a number that is obtained by multiplying the same integer three times}}{\text{.}}$$
    $${\textbf{Step -2: Try to simplify the equation}}{\textbf{.}}$$
                    $${\text{Option A, }}8{x^3} + 36{x^2}y - 54x{y^2} + 27{y^3}.$$
                     $$ = {\left( {2x} \right)^3} + {\left( {3y} \right)^3} + 18xy\left( {2x - 3y} \right)$$
                     $${\mathbf{\left[ {{{\left( {a - b} \right)}^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}{\textbf{ and }}{{\left( {a + b} \right)}^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}} \right]}}$$
                      $$ = {\left( {2x + 3y} \right)^3} + 18xy\left( {2x - 3y} \right)$$
                      $${\text{Hence, it does not satisfy either of the formula}}{\text{.}}$$
                      $${\text{Option B, }}{x^3} - 3x - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}.$$
                      $${\text{As it contains variables with }}\dfrac{1}{{{x^2}}},{\text{ hence not according to formula}}{\text{.}}$$
                      $${\text{Option C, 8}}{x^3} - 4\dfrac{{{x^2}}}{y} + \dfrac{2}{3}.\dfrac{x}{{{y^2}}} - \dfrac{1}{{27{y^3}}}.$$
                       $${\text{From the formula,}}$$
                       $${\left( {2x} \right)^3} - {\left( {\dfrac{1}{{3y}}} \right)^3} - 3 \times {\left( {2x} \right)^2} \times \dfrac{1}{{3y}} + 3 \times \left( {2x} \right) \times {\left( {\dfrac{1}{{3y}}} \right)^2}$$
                       $${\text{Hence, it fulfills the formula criteria of }}{\left( {a - b} \right)^3}.$$
                        $${\text{Option D,}}27{x^3} + 54{x^2}y - 36x{y^2} + {\text{ }}8{y^3}.$$
                        $$ = {\left( {3x} \right)^3} + {\left( {2y} \right)^3} + 18xy\left( {3x - 2y} \right)$$
                        $$ = {\left( {3x + 2y} \right)^3} $$       
    $${\textbf{Hence, 8}}{\mathbf{{x^3} - 4\dfrac{{{x^2}}}{y} + \dfrac{2}{3}.\dfrac{x}{{{y^2}}} - \dfrac{1}{{27{y^3}}}}}{\textbf{ is a perfect cube}}.$$ 

  • Question 10
    1 / -0
    The HCF of two ploynomials $$A$$ and $$B$$ using long division method was found to be $$2x + 1$$ after two steps . The fisrt two quotient obtained are $$x$$ and $$(x + 1)$$ . Find $$A$$ and $$B$$ . Given that degree of $$A$$ > degree of $$B$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now