$${\textbf{Step -1: Define a perfect cube}}{\textbf{.}}$$
$${\text{It is a number that is obtained by multiplying the same integer three times}}{\text{.}}$$
$${\textbf{Step -2: Try to simplify the equation}}{\textbf{.}}$$
$${\text{Option A, }}8{x^3} + 36{x^2}y - 54x{y^2} + 27{y^3}.$$
$$ = {\left( {2x} \right)^3} + {\left( {3y} \right)^3} + 18xy\left( {2x - 3y} \right)$$
$${\mathbf{\left[ {{{\left( {a - b} \right)}^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}{\textbf{ and }}{{\left( {a + b} \right)}^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}} \right]}}$$
$$ = {\left( {2x + 3y} \right)^3} + 18xy\left( {2x - 3y} \right)$$
$${\text{Hence, it does not satisfy either of the formula}}{\text{.}}$$
$${\text{Option B, }}{x^3} - 3x - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}.$$
$${\text{As it contains variables with }}\dfrac{1}{{{x^2}}},{\text{ hence not according to formula}}{\text{.}}$$
$${\text{Option C, 8}}{x^3} - 4\dfrac{{{x^2}}}{y} + \dfrac{2}{3}.\dfrac{x}{{{y^2}}} - \dfrac{1}{{27{y^3}}}.$$
$${\text{From the formula,}}$$
$${\left( {2x} \right)^3} - {\left( {\dfrac{1}{{3y}}} \right)^3} - 3 \times {\left( {2x} \right)^2} \times \dfrac{1}{{3y}} + 3 \times \left( {2x} \right) \times {\left( {\dfrac{1}{{3y}}} \right)^2}$$
$${\text{Hence, it fulfills the formula criteria of }}{\left( {a - b} \right)^3}.$$
$${\text{Option D,}}27{x^3} + 54{x^2}y - 36x{y^2} + {\text{ }}8{y^3}.$$
$$ = {\left( {3x} \right)^3} + {\left( {2y} \right)^3} + 18xy\left( {3x - 2y} \right)$$
$$ = {\left( {3x + 2y} \right)^3} $$
$${\textbf{Hence, 8}}{\mathbf{{x^3} - 4\dfrac{{{x^2}}}{y} + \dfrac{2}{3}.\dfrac{x}{{{y^2}}} - \dfrac{1}{{27{y^3}}}}}{\textbf{ is a perfect cube}}.$$