Self Studies

Quadratic Equations Test - 34

Result Self Studies

Quadratic Equations Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What are the real factors of x2+4x^2 + 4?
    Solution
    Real factors of the equation does not exist as it doesn't have real roots

    x2=4x^{2}=-4

    x=+2i\Rightarrow x=+2i or 2i- 2i
  • Question 2
    1 / -0
    Given that 'xx' is real then the solution set of the equation x1+x+1=1\sqrt { x-1 } +\sqrt { x+1 } =1.
    Solution
    x1+x+1=1\sqrt{x-1}+\sqrt{x+1}=1 As x> 1x >  1 
    x1\because x-1 can't be negative.
    x+1> 1\Rightarrow \sqrt{x+1} >  1 0x10\sqrt{x-1} is possitve 
    \therefore there sum is >1 > 1 always . hence no solution.
  • Question 3
    1 / -0
    The discriminant (D) of x2+x+1=2\sqrt {x^{2} + x + 1} = 2 is
    Solution
    Discrimant (D) is applied only to quadratic equations, but the equation x2+x+1=2 \sqrt{x^{2}+x+1} = 2 is not an quadratic equation, 
    Hence, first convert the equation into quadratic by squaring it on both sides,
     
    x2+x+1=2 \sqrt{x^{2}+x+1} = 2

    x2+x+1=4 \Rightarrow x^{2}+x+1 = 4

    x2+x3=0 \Rightarrow x^{2}+x-3 = 0

    D=b24ac \therefore D = b^{2}-4ac

    D=14×1×(3) D = 1-4\times 1\times (-3)

    D=13 \boxed{D = 13}  
  • Question 4
    1 / -0
    If f(x)=x2+4x+af(x)=x^2+4x+a is a perfect square function then calculate the value of aa.
    Solution
    Since f(x) is perfect square, then both the roots are equal.
    \therefore D=0
    164a=016-4a=0
    a=4a=4
  • Question 5
    1 / -0
    The roots of the quadratic equation (a+b2c)x2(2abc)x+(a2b+c)=0(a+b-2c)x^2-(2a-b-c)x+(a-2b+c)=0 are-
    Solution
    Clearly we see that x=1 satisfies the equation

    \Rightarrow x=1 is a root of the that equation 

    Let α\alpha be other root 

    Product of roots =1×α=a2b+ca+b2c1×\alpha =\dfrac{a-2b+c}{a+b-2c}

    other root =α=a2b+ca+b2c=\alpha =\dfrac {a-2b+c}{a+b-2c}
  • Question 6
    1 / -0
    If α,β\alpha,\beta are roots of the equation 2x235x+2=02x^2-35x+2=0 then the value of (2α35)3(2β35)3(2\alpha-35)^3(2\beta-35)^3 is:
    Solution
    We will substitute α,β\alpha, \beta in the above equation

    2α35+2α=0\Rightarrow 2\alpha - 35+\dfrac {2}{\alpha} =0

    2α35=2α\Rightarrow 2\alpha - 35=\dfrac {-2}{\alpha}

    Similarly for beta 

    (2α35)3(2β35)3=8α3×8β3=641=64\Rightarrow (2\alpha - 35)^{3}(2\beta - 35)^{3}=\dfrac {-8}{\alpha ^{3}}×\dfrac {-8}{\beta^{3}}=\dfrac {64}{1}=64
  • Question 7
    1 / -0
    Sum of the roots of the equation (x+3)24x+3+3=0(x+3)^2-4|x+3|+3=0 is-
    Solution
    (x+3)24x+3+3=0letx+3=tt0t24t+3=0(t1)(t3)=0t=1 or 3whent=1x+3=1x+3=1orx+3=1x=2orx=4whent=3x+3=3orx+3=3x=0orx=6sumofallroots=(2)+(4)+(0)+(6)=12{ (x+3) }^{ 2 }-4|x+3|+3=0\\ let\quad |x+3|=t\\ \therefore t\ge 0\\ { t }^{ 2 }-4t+3=0\\ (t-1)(t-3)=0\\ \therefore t=1\ or\ 3\\ when\quad t=1\\ |x+3|=1\\ x+3=1\quad or\quad x+3=-1\\ x=-2\quad or\quad x=-4\\ when\quad t=3\\ |x+3|=3\quad or\quad x+3=-3\\ x=0\quad or\quad x=-6\\ sum\quad of\quad all\quad roots\quad =\quad (-2)+(-4)+(0)+(-6)\\ =-12
  • Question 8
    1 / -0
    Solve the following quadratic equation by completing the square: x2+6x7=0x^2+6x-7=0
    Solution
    \Rightarrow  The given quadratic equation is x2+6x7=0x^2+6x-7=0

    \Rightarrow  x2+6x=7x^2+6x=7

    \Rightarrow  x2+6x+9=7+9x^2+6x+9=7+9                           [ Adding 99 on both sides ]

    \Rightarrow  (x+3)2=16(x+3)^2=16

    \therefore   x+3=±4x+3=\pm 4                          [ Taking square root on both sides ]

    \Rightarrow  x+3=4x+3=4  and  x+3=4x+3=-4

    \therefore    x=1x=1 and x=7x=-7
  • Question 9
    1 / -0
    The minimum value of the expression 4x2+2x+14x^2+2x+1 is-
    Solution
    For a general quadratic equation ax2+bx+c=0,wherea>0theminimumvalueofexpressionoccursatD4a4x2+2x+1minimumvalue=(224.4.1)4.4=1216=34 { ax }^{ 2 }+bx+c=0,\quad where\quad a>0\quad the\quad minimum\quad value\quad of\quad expression\quad occurs\quad at\quad \cfrac { -D }{ 4a } \\ \therefore { 4x }^{ 2 }+2x+1\\ minimum\quad value\quad =\quad \cfrac { -({ 2 }^{ 2 }-4.4.1) }{ 4.4 } \\ =\cfrac { 12 }{ 16 } =\cfrac { 3 }{ 4 }
  • Question 10
    1 / -0
    Solve the following quadratic equation by completing the square: x2+3x+1=0x^2+3x+1=0
    Solution
    x2+3x+1=0x^2+3x+1=0
    The 3 will have to be divided by 22 then the result should be squared and the final result is 94\dfrac{9}{4}This number will be added and subtracted in the equation on one side.
    x2+3x+9494+1=0x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}+1=0

    (x2+3x+94)94+1=0\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}+1=0

    (x+32)294+1=0\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}+1=0
                      
    (x+32)254=0\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}=0

    (x+32)2=54\left(x+\dfrac{3}{2}\right)^2=\dfrac{5}{4}

    Now taking square root on both sides we get,
    x+32=±52x+\dfrac{3}{2}=\pm\dfrac{\sqrt{5}}{2}

    \therefore  x=32±52x=-\dfrac{3}{2}\pm\dfrac{\sqrt{5}}{2}

    \therefore  x=32+52x=-\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}  and  x=3252x=-\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}

    \Rightarrow  x=(3+52,352)x=\left(\dfrac{-3+\sqrt{5}}{2},\dfrac{-3-\sqrt{5}}{2}\right)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now