Self Studies

Quadratic Equations Test - 34

Result Self Studies

Quadratic Equations Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What are the real factors of $$x^2 + 4$$?
    Solution
    Real factors of the equation does not exist as it doesn't have real roots

    $$x^{2}=-4$$

    $$\Rightarrow x=+2i$$ or $$- 2i$$
  • Question 2
    1 / -0
    Given that '$$x$$' is real then the solution set of the equation $$\sqrt { x-1 } +\sqrt { x+1 } =1$$.
    Solution
    $$\sqrt{x-1}+\sqrt{x+1}=1$$ As $$x >  1$$ 
    $$\because x-1$$ can't be negative.
    $$\Rightarrow \sqrt{x+1} >  1$$ $$0\sqrt{x-1}$$ is possitve 
    $$\therefore $$ there sum is $$ > 1$$ always . hence no solution.
  • Question 3
    1 / -0
    The discriminant (D) of $$\sqrt {x^{2} + x + 1} = 2$$ is
    Solution
    Discrimant (D) is applied only to quadratic equations, but the equation $$ \sqrt{x^{2}+x+1} = 2 $$ is not an quadratic equation, 
    Hence, first convert the equation into quadratic by squaring it on both sides,
     
    $$ \sqrt{x^{2}+x+1} = 2 $$

    $$ \Rightarrow x^{2}+x+1 = 4 $$

    $$ \Rightarrow x^{2}+x-3 = 0 $$

    $$ \therefore D = b^{2}-4ac $$

    $$ D = 1-4\times 1\times (-3) $$

    $$ \boxed{D = 13} $$ 
  • Question 4
    1 / -0
    If $$f(x)=x^2+4x+a$$ is a perfect square function then calculate the value of $$a$$.
    Solution
    Since f(x) is perfect square, then both the roots are equal.
    $$\therefore$$ D=0
    $$16-4a=0$$
    $$a=4$$
  • Question 5
    1 / -0
    The roots of the quadratic equation $$(a+b-2c)x^2-(2a-b-c)x+(a-2b+c)=0$$ are-
    Solution
    Clearly we see that x=1 satisfies the equation

    $$\Rightarrow $$x=1 is a root of the that equation 

    Let $$\alpha $$ be other root 

    Product of roots =$$1×\alpha =\dfrac{a-2b+c}{a+b-2c}$$

    other root $$=\alpha =\dfrac {a-2b+c}{a+b-2c}$$
  • Question 6
    1 / -0
    If $$\alpha,\beta$$ are roots of the equation $$2x^2-35x+2=0$$ then the value of $$(2\alpha-35)^3(2\beta-35)^3$$ is:
    Solution
    We will substitute $$\alpha, \beta $$ in the above equation

    $$\Rightarrow 2\alpha - 35+\dfrac {2}{\alpha} =0$$

    $$\Rightarrow 2\alpha - 35=\dfrac {-2}{\alpha} $$

    Similarly for beta 

    $$\Rightarrow (2\alpha - 35)^{3}(2\beta - 35)^{3}=\dfrac {-8}{\alpha ^{3}}×\dfrac {-8}{\beta^{3}}=\dfrac {64}{1}=64$$
  • Question 7
    1 / -0
    Sum of the roots of the equation $$(x+3)^2-4|x+3|+3=0$$ is-
    Solution
    $${ (x+3) }^{ 2 }-4|x+3|+3=0\\ let\quad |x+3|=t\\ \therefore t\ge 0\\ { t }^{ 2 }-4t+3=0\\ (t-1)(t-3)=0\\ \therefore t=1\ or\ 3\\ when\quad t=1\\ |x+3|=1\\ x+3=1\quad or\quad x+3=-1\\ x=-2\quad or\quad x=-4\\ when\quad t=3\\ |x+3|=3\quad or\quad x+3=-3\\ x=0\quad or\quad x=-6\\ sum\quad of\quad all\quad roots\quad =\quad (-2)+(-4)+(0)+(-6)\\ =-12$$
  • Question 8
    1 / -0
    Solve the following quadratic equation by completing the square: $$x^2+6x-7=0$$
    Solution
    $$\Rightarrow$$  The given quadratic equation is $$x^2+6x-7=0$$

    $$\Rightarrow$$  $$x^2+6x=7$$

    $$\Rightarrow$$  $$x^2+6x+9=7+9$$                           [ Adding $$9$$ on both sides ]

    $$\Rightarrow$$  $$(x+3)^2=16$$

    $$\therefore$$   $$x+3=\pm 4$$                          [ Taking square root on both sides ]

    $$\Rightarrow$$  $$x+3=4$$  and  $$x+3=-4$$

    $$\therefore$$    $$x=1$$ and $$x=-7$$
  • Question 9
    1 / -0
    The minimum value of the expression $$4x^2+2x+1$$ is-
    Solution
    For a general quadratic equation $$ { ax }^{ 2 }+bx+c=0,\quad where\quad a>0\quad the\quad minimum\quad value\quad of\quad expression\quad occurs\quad at\quad \cfrac { -D }{ 4a } \\ \therefore { 4x }^{ 2 }+2x+1\\ minimum\quad value\quad =\quad \cfrac { -({ 2 }^{ 2 }-4.4.1) }{ 4.4 } \\ =\cfrac { 12 }{ 16 } =\cfrac { 3 }{ 4 } $$
  • Question 10
    1 / -0
    Solve the following quadratic equation by completing the square: $$x^2+3x+1=0$$
    Solution
    $$x^2+3x+1=0$$
    The 3 will have to be divided by $$2$$ then the result should be squared and the final result is $$\dfrac{9}{4}$$. This number will be added and subtracted in the equation on one side.
    $$x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}+1=0$$

    $$\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}+1=0$$

    $$\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}+1=0$$
                      
    $$\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}=0$$

    $$\left(x+\dfrac{3}{2}\right)^2=\dfrac{5}{4}$$

    Now taking square root on both sides we get,
    $$x+\dfrac{3}{2}=\pm\dfrac{\sqrt{5}}{2}$$

    $$\therefore$$  $$x=-\dfrac{3}{2}\pm\dfrac{\sqrt{5}}{2}$$

    $$\therefore$$  $$x=-\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}$$  and  $$x=-\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}$$

    $$\Rightarrow$$  $$x=\left(\dfrac{-3+\sqrt{5}}{2},\dfrac{-3-\sqrt{5}}{2}\right)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now