Self Studies

Quadratic Equations Test - 35

Result Self Studies

Quadratic Equations Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of values of $$a$$ for which $$(a^2-3a+2)x^2+(a^2-5a+6)x+a^2-4=0$$ is an identity in $$x$$ is-
    Solution
    Equation is a identity if all its coefficients are equal to zero simultaneously

    $$\Rightarrow a^{2}-3a+2=0$$

    $$\Rightarrow a=2,1$$

    $$\Rightarrow a^{2}-5a+6=0$$

    $$\Rightarrow a^{2}-4=0$$

    $$\Rightarrow a=\pm 2$$

    $$\Rightarrow$$coefficients are equal to zero simultaneously when $$a=2$$

    Therefore only one value of 'a' the equation is identity in  $$x$$
  • Question 2
    1 / -0
    Solve the following quadratic equation by completing the square: $$ x^2+(\sqrt{3}+1)x+\sqrt{3}=0$$
    Solution
    Given equation is $$x^2-(\sqrt{3}+1)x+\sqrt{3}=0$$

    $$\Rightarrow$$  $$x^2-(\sqrt{3}+1)x=-\sqrt{3}$$

    Now, adding $$\left(\dfrac{\sqrt{3}+1}{2}\right)^2$$ on both sides,

    $$\Rightarrow$$  $$x^2-2\times x\times \left(\dfrac{\sqrt{3}+1}{2}\right)+\left(\dfrac{\sqrt{3}+1}{2}\right)^2=-\sqrt{3}+\left(\dfrac{\sqrt{3}+1}{2}\right)^2$$

    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]^2=\left[\dfrac{(\sqrt{3}+1)^2}{4}-\sqrt{3}\right]$$

    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]^2=\left[\dfrac{3+2\sqrt{3}+1-4\sqrt{3}}{4}\right]$$

    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]^2=\left[\dfrac{3-2\sqrt{3}+1}{4}\right]$$

    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]^2=\left[\dfrac{\sqrt{3}-1}{2}\right]^2$$

    Taking square root on both sides, 
      
    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]=\pm\dfrac{\sqrt{3}-1}{2}$$

    $$\Rightarrow$$  $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]=\dfrac{\sqrt{3}-1}{2}$$ 
    and $$\left[x-\dfrac{(\sqrt{3}+1)}{2}\right]=-\dfrac{\sqrt{3}-1}{2}$$

    $$\therefore$$  $$x=\dfrac{2\sqrt{3}}{2}$$  and $$ x=\dfrac{2}{2}$$

    $$\therefore$$  $$x=\sqrt{3}$$ and $$x=1$$

  • Question 3
    1 / -0
    Solve the following quadratic equation by completing the square: $$ 4x^2+4bx-(a^2-b^2)=0$$
    Solution
    Given equation is $$4x^2+4bx-(a^2-b^2)=0$$

    $$\Rightarrow$$  $$x^2+bx-\dfrac{(a^2-b^2)}{4}=0$$

    $$\Rightarrow$$  $$x^2+bx=\dfrac{(a^2-b^2)}{4}$$

    Now, $$\left(\dfrac{b}{2}\right)^2=\dfrac{b^2}{4}$$

    Adding $$\dfrac{b^2}{4}$$ on bothe sides,

    $$\Rightarrow$$  $$x^2+bx+\dfrac{b^2}{4}=\dfrac{a^2}{4}-\dfrac{b^2}{4}+\dfrac{b^2}{4}$$

    $$\Rightarrow$$  $$\left(x+\dfrac{b}{2}\right)^2=\dfrac{a^2}{4}$$
      
    Taking square root on both sides

    $$\Rightarrow$$  $$x+\dfrac{b}{2}=\pm\dfrac{a}{2}$$

    $$\Rightarrow$$  $$x+\dfrac{b}{2}=\dfrac{a}{2}$$  and $$x+\dfrac{b}{2}=-\dfrac{a}{2}$$

    $$\Rightarrow$$  $$x=\dfrac{a-b}{2}$$ and $$x=-\left(\dfrac{a+b}{2}\right)$$
  • Question 4
    1 / -0
    ............... is true for discriminate of quadratic equation $$x^2 + x + 1 = 0$$.
    Solution
    The polynomial is $$x^2 + x + 1 = 0$$.

    Comparing with $$ax^2 + bx + c = 0$$, we get

    $$a = 1, b = 1, c = 1$$

    $$D = b^2 - 4ac = 1 - 4(1) (1) = -3 < 0$$
  • Question 5
    1 / -0
    The discriminant value of equation $$5{x}^{2}-6x+1=0$$ is ............... 
    Solution
    The given equation is $$5{x}^{2}-6x+1=0$$ ........... $$(i)$$

    General form of quadratic equation is given by $$ax^2+bx+c=0$$ ....... $$(ii)$$

    Comparing equation $$(i)$$ with $$(ii)$$ we have,

    $$a=5,b=-6,c=1$$

    The discriminant $$D$$ is given by 

    $$D={b}^{2}-4ac={(-6)}^{2}-4(5)(1)=36-20=16$$

    $$\therefore$$ Discriminant value is $$D=16$$
  • Question 6
    1 / -0
    Solve the following quadratic equation by completing the square: $$\dfrac{5x+7}{x-1}=3x+2$$
    Solution
    Given $$\dfrac{5x+7}{x-1}=3x+2$$

    $$\Rightarrow$$  $$5x+7=(3x+2)(x-1)$$

    $$\Rightarrow$$  $$5x+7=3x^2-3x+2x-2$$

    $$\Rightarrow$$  $$3x^2-6x-9=0$$

    $$\Rightarrow$$  $$x^2-2x-3=0$$

    $$\Rightarrow$$  Here, $$a=1,\,b=-2,\,c=-3$$

    $$\Rightarrow$$  $$x^2-2x=3$$

    Now, $$\left(\dfrac{b}{2}\right)^2=\left (\dfrac{-2}{2} \right )^2=1$$

    Adding $$1$$ on both sides,

    $$\Rightarrow$$  $$x^2-2x+1=3+1$$

    $$\Rightarrow$$  $$(x-1)^2=4$$
      
    Taking square root on both sides

    $$\Rightarrow$$  $$x-1=\pm2$$

    $$\Rightarrow$$  $$x-1=2$$ and $$x-1=-2$$

    $$\therefore$$  $$x=3$$ and $$x=-1$$
  • Question 7
    1 / -0
    If the roots of the equation $$x^{2} + px + c = 0$$ are $$(2, -2)$$ and the roots of the equation $$x^{2} + bx + q = 0$$ are $$(-1, -2)$$, then the roots of the equation $$x^{2} + bx + c = 0$$ are
    Solution
    Given, roots of the equation $$x^{2} + px + c = 0$$ are $$2$$ and $$-2$$.

    $$\therefore -p = 2 - 2 \Rightarrow p = 0$$

    and $$(2)\cdot (-2) = c\Rightarrow c = -4$$

    Again, roots of the equation $$x^{2} + bx + q = 0$$ are $$-1$$ and $$-2$$.

    $$\therefore -b = -1 -1 \Rightarrow b = 3$$

    and $$(1-) \cdot (-2) = q\Rightarrow q = 2$$

    $$\therefore x^{2} + bc + c \equiv x^{3} + 3x - 4 =0$$

    $$\Rightarrow (x - 1)(x + 4) = 0$$

    So, the required roots are $$1$$ and $$-4$$.
  • Question 8
    1 / -0
    Let $$\alpha$$ be the root of the equation $$25\cos^{2}\theta + 5\cos \theta - 12 = C$$, where $$\dfrac {\pi}{2} < \alpha < \pi$$.
    What is $$\tan \alpha$$ equal to?
    Solution
    Given equation is $$25\cos^2\theta+5\cos\theta-12=0$$

    $$\Rightarrow 25\cos^2\theta+20\cos\theta-15\cos\theta-12=0$$

    $$\Rightarrow 5\cos\theta(5\cos\theta+4)-3(5\cos\theta+4)=0$$

    $$\Rightarrow (5\cos\theta-3)(5\cos\theta+4)=0$$

    So, $$\cos\theta=\dfrac{3}{5}$$ or $$\cos\theta=\dfrac{-4}{5}$$

    Since $$\alpha$$ is the root of the equation and it lies between $$\dfrac{\pi}{2}<\alpha<\pi\Rightarrow \cos \alpha\  $$ is '-ve'.

    Thus $$\alpha=\cos^{-1}\left (\dfrac{-4}{5}\right)$$ 

    Since it lies in the range $$\dfrac{\pi}{2}<\alpha<\pi$$, so $$\tan \alpha$$ is '-ve'

    $$\tan\alpha=\tan\left [\cos^{-1}\left (\dfrac{-4}{5}\right)\right]$$

    $$=\tan \left [\tan^{-1}\left (-\dfrac{3}{4}\right)\right]$$

    $$=-\dfrac{3}{4}$$
  • Question 9
    1 / -0
    Sum of the roots of the equation $${ \left| x-3 \right|  }^{ 2 }+\left| x-3 \right| -2=0$$ is
    Solution
    Given equation is $${ \left| x-3 \right|  }^{ 2 }+\left| x-3 \right| -2=0$$

    $$\Rightarrow { \left| x-3 \right|  }^{ 2 }+2\left| x-3 \right| -\left| x-3 \right| -2=0$$

    $$\Rightarrow \left| x-3 \right| \left( \left| x-3 \right| +2 \right) -1\left( \left| x-3 \right| +2 \right) =0$$

    $$\Rightarrow \left( \left| x-3 \right| +2 \right) \left( \left| x-3 \right| -1 \right) =0$$

    Therefore, $$ \left| x-3 \right| =-2,1$$

    But $$\left| x-3 \right| \neq -2$$

    Hence, $$\left| x-3 \right| =1$$

    $$\Rightarrow x-3=\pm 1$$

    $$\Rightarrow x=3\pm 1$$

    $$\Rightarrow x=4, 2$$

    Now, sum of the roots $$=4+2=6$$.
  • Question 10
    1 / -0
    The equation $${ e }^{ \sin { x }  }-{ e }^{ -\sin { x }  }-4=0$$ has
    Solution
    Given, $${ e }^{ \sin { x }  }-{ e }^{ -\sin { x }  }-4=0$$ 

    multiply throughout by $$e^{sinx}$$

    $$\Rightarrow { e }^{ 2\sin { x }  }-4{ e }^{ \sin { x }  }-1=0$$

    this is quadratc equation in $$e^{sinx}$$

    converting from exponential to logarithmic form.

    $${ e }^{ \sin { x }  }=\dfrac { 4\pm \sqrt { 16+4 }  }{ 2 } =2\pm \sqrt { 5 }$$

    $$\Rightarrow \sin { x } =\log { \left( 2+\sqrt { 5 }  \right)  } $$               [$$ \because \log { \left( 2-\sqrt { 5 }  \right)  }$$ is not defined ] 

    Since, $$2+\sqrt { 5 } > e \Rightarrow \log { \left( 2+\sqrt { 5 }  \right)  } > 1$$

    $$\Rightarrow \sin { x } > 1$$, which is not possible.
    Hence, no solution exist.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now