Self Studies

Quadratic Equations Test - 37

Result Self Studies

Quadratic Equations Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the roots of the following quadratic equation (if they exist) by the method of completing the square.
    x2(2+1) x+2=0x^2 \, - \, (\sqrt{2} \, + \, 1)  \, x \, + \, \sqrt{2} \, = \, 0
    Solution
    x2(2+1)x+2=0x^2-(\sqrt{2}+1)x+\sqrt{2}=0
    Here, a=1,b=(2+1),c=2a=1,\,b=-(\sqrt{2}+1),\,c=\sqrt{2}
    \Rightarrow  x2(2+1)x=2x^2-(\sqrt{2}+1)x=-\sqrt{2}

    Now, (2+12)2=2+22+14\left(\dfrac{\sqrt{2}+1}{2}\right)^2=\dfrac{2+2\sqrt{2}+1}{4}

    Adding 2+22+14\dfrac{2+2\sqrt{2}+1}{4}, on both sides,

    \Rightarrow  x2(2+1)x+2+22+14=2+2+22+14x^2-(\sqrt{2}+1)x+\dfrac{2+2\sqrt{2}+1}{4}=-\sqrt{2}+\dfrac{2+2\sqrt{2}+1}{4}

    \Rightarrow  [x(2+12)]2=222+14\left[x-\left(\dfrac{\sqrt{2}+1}{2}\right)\right]^2=\dfrac{2-2\sqrt{2}+1}{4}

    \Rightarrow  [x(2+12)]2=(212)2\left[x-\left(\dfrac{\sqrt{2}+1}{2}\right)\right]^2=\left(\dfrac{\sqrt{2}-1}{2}\right)^2

    \Rightarrow  x(2+12)=±(212)x-\left(\dfrac{\sqrt{2}+1}{2}\right)=\pm\left(\dfrac{\sqrt{2}-1}{2}\right)

    \Rightarrow  x=21+2+12x=\dfrac{\sqrt{2}-1+\sqrt{2}+1}{2}  and  x=2+1+2+12x=\dfrac{-\sqrt{2}+1+\sqrt{2}+1}{2} 

    \therefore  x=2x=\sqrt{2} and x=1x=1
  • Question 2
    1 / -0
    Using the identity (x+a)(x+b),\left( {x + a} \right)\left( {x + b} \right), the value of (2a1)(2a+2)\left( {2a - 1} \right)\left( {2a + 2} \right)
    Solution
    (2a1)(2a+2)\left(2a-1\right)\left(2a+2\right)
    =4a22a+4a2={4a}^{2}-2a+4a-2
    =4a2+2a2={4a}^{2}+2a-2
  • Question 3
    1 / -0

    Which of the following statements is TRUE/CORRECT about Quadratic Equations? A quadratic equation is _____

    Solution
    The definition of a Quadratic Equation states that an equation with one variable and degree 22 is a Quadratic Equation. Only option bb satisfies the two basic conditions of a quadratic equation i.e. one/single  variable and degree 22. Hence bb is the correct answer.
  • Question 4
    1 / -0
    Which of the following methods is used to derive the Standard Quadratic Formula for the Quadratic Equation ax2+bx+c=0ax^2+bx+c=0?
    Solution
    We have learnt that in order to derive the standard quadratic formula from the standard form of a quadratic equation ax2+bx+c=0ax^2+bx+c=0,we follow the steps involved in the Completing Square Method . Hence bb is the correct option.
  • Question 5
    1 / -0
    If (α\alpha β\beta ) are the roots of ax2+bx+c=0a{x^2} + bx + c = 0 ,(a0)\left( {a \ne 0} \right) and (α +δ\alpha  + \delta β +δ\beta  + \delta ) are the roots of Ax2+Bx+C=0, (A 0)A{x^2} + Bx + C = 0,\ (A \ne  0) for some constant δ\delta , then the value of  δ\delta  is
    Solution

  • Question 6
    1 / -0
    For a0a \le 0, the roots of the equation x22axa3a2=0{x^2} - 2a\left| {x - a} \right| - 3{a^2} = 0 is
    Solution
    x22axa3a2=0x^2-2a|x-a|-3a^2=0
    Case II
    xax\ge a
        x22a(xa)3a2=0\implies x^2-2a(x-a)-3a^2=0
        x22ax+a2=2a2\implies x^2-2ax+a^2=2a^2
        xa=±2a\implies x-a=\pm \sqrt{2}a
        x=a±2a\implies x=a\pm \sqrt{2}a
    But, a<0a<0
    x=a(12)\therefore x=a(1-\sqrt{2})
    Case IIII
    as, x<0x<0, a<0a<0
    But we want only positive roots, we have nothing to do with this case.
    Thus, x=a(12)x=a(1-\sqrt{2})
  • Question 7
    1 / -0
    The value of a'a' for which the quadratic equation 2x2x(a2+8a1)+a24a=02{x^2} - x\left( {{a^2} + 8a - 1} \right) + {a^2} - 4a = 0 has roots opposite signs, lie in the interval 
    Solution
    R.E.F image 
    Given equation is : 2x2x(a2+8a1)+a24a=0 2x^{2}-x(a^{2}+8a-1)+a^{2}-4a = 0
    Comparing it with the equation : ax2+bx+c=0 ax^{2}+bx+c = 0
    we have a=2 a = 2
    b=(a2+8a1) b = -(a^{2}+8a-1)
    c=a24a c = a^{2}-4a
    For the roots to have opposite signs.
    product of roots <0 < 0
    ca<0 \Rightarrow \dfrac{c}{a}< 0
    a24a2<0 \Rightarrow \dfrac{a^{2}-4a}{2}< 0
    a24a<0 \Rightarrow a^{2}-4a< 0
    a(a4)<0 \Rightarrow a(a-4)< 0
    (a0)(a4)<0 \Rightarrow (a-0)(a-4)< 0
    aE(0,4) \therefore aE(0,4)  

  • Question 8
    1 / -0
    Find the roots of the equation 5x26x2=05x^{2} -6x-2 = 0 by the method of completing the square.
    Solution
    5x26x2=0x265x25=0x265x=25x22×35x+(35)25x^2-6x-2=0\Rightarrow x^2-\dfrac65x-\dfrac25=0\Rightarrow x^2-\dfrac65x=\dfrac25\Rightarrow x^2-2\times \dfrac35x+(\dfrac{3}{5})^2
    (x35)2=1025+925x35=±195x=±19+35\Rightarrow (x-\dfrac35)^2=\dfrac{10}{25}+\dfrac{9}{25}\\\Rightarrow x-\dfrac35=\pm\dfrac{\sqrt{19}}{5}\Rightarrow x=\dfrac{\pm\sqrt{19}+3}{5}
  • Question 9
    1 / -0
    The roots of the given equation (pq)x2+(qr)x+(rp)=0\left( {p - q} \right){x^2} + \left( {q - r} \right)x + \left( {r - p} \right) = 0  are 
    Solution
    (pq)x2+(qr)x+(rp)=0(p-q)x^2+(q-r)x+(r-p)=0
        px2qx2+qxrx+rp=0\implies px^2-qx^2+qx-rx+r-p=0
        p(x21)+q(xx2)+r(1x)=0\implies p(x^2-1)+q(x-x^2)+r(1-x)=0
        p(x+1)qxr=0\implies p(x+1)-qx-r=0
        px+pqxr=0\implies px+p-qx-r=0
        x(pq)=rp\implies x(p-q)=r-p
        x=rppq\implies x=\cfrac{r-p}{p-q}
    x=rppq,1\therefore x=\cfrac{r-p}{p-q},1
  • Question 10
    1 / -0
    Two water taps together can fill a tank in 31133\dfrac {1}{13} hours. The tap of longer diameter takes 33 hours less then smaller one to fill the bank separately. Find the time(hrs) in which tap of smaller diameter can separately fill the tank.
    Solution
    Let time taken by tap of longer diameter be xx hours

    Then time taken by tap of smaller diameter will be x+3x+3 hours

    Now,  According to question

    1x+1x+3=1340\dfrac {1}{x} + \dfrac {1}{{x + 3}} = \dfrac {{13}}{{40}}

    2x+3x(x+3)=1340 \Rightarrow \dfrac {{2x + 3}}{{x\left( {x + 3} \right)}} = \dfrac {{13}}{{40}}

    80x+120=13x2+39x \Rightarrow 80x + 120 = 13{x^2} + 39x

    13x241x120=0 \Rightarrow 13{x^2} - 41x - 120 = 0

    13x2+24x65x120=0 \Rightarrow 13{x^2} + 24x - 65x - 120 = 0

    x(13x+24)5(13x+24)=0 \Rightarrow x\left( {13x + 24} \right) - 5\left( {13x + 24} \right) = 0

    (13x+24)(x5)=0 \Rightarrow \left( {13x + 24} \right)\left( {x - 5} \right) = 0

    x=2413 \Rightarrow x = \dfrac {{ - 24}}{{13}} or x=5x=5

    Since time cannot be negative
    Therefore x=5x=5

    Hence, Time taken by tap of larger diameter is55 hours and time taken by tap of smaller diameter is 88 hours
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now