Self Studies

Quadratic Equations Test - 42

Result Self Studies

Quadratic Equations Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If α\alpha and β\beta are roots of the equation x2+sinθ.2sinθ=0x^2 + \sin \theta . 2 \sin \theta = 0 then α12+β12(α12+β12)(αβ)24\dfrac{\alpha^{12} + \beta^{12}}{(\alpha^{-12} + \beta^{-12})(\alpha - \beta)^{24}} is equal to 
    Solution
    x2+xsinθ 2sinθ=0x^2 + x\sin \theta  - 2 \sin \theta = 0, has roots α\alpha and β\beta
    α12+β12(α12+β12)(αβ)24=α12.β12(αβ)24=(αβ)12(αβ)24\dfrac{\alpha^{12}+\beta^{12}}{(\alpha^{-12}+\beta^{-12})(\alpha - \beta)^{24}} = \dfrac{\alpha^{12} . \beta^{12}}{(\alpha - \beta)^{24}} = \dfrac{(\alpha \beta)^{12}}{(\alpha - \beta)^{24}}
    =(2sinθ)12(sin2θ+8sinθ)24=212(8+sinθ)12 = \dfrac{(-2\sin \theta)^{12}}{(\sqrt{\sin^2 \theta + 8 \sin \theta})^{24}} = \dfrac{2^{12}}{(8 + \sin \theta)^{12}}
  • Question 2
    1 / -0
    Which one of the following is the quadratic equation?
    Solution
    Option : [A]
    5x3=x2\dfrac{5}{x} - 3 = x^2
    53xx=x2\dfrac{5 - 3x}{x} = x^2
    53x=x35 - 3x = x^3
    x3+3x5=0x^3 + 3x - 5 = 0
    \Rightarrow This is not a quadratic equation.

    Option : [B]
    x(x+5)=4x (x + 5) = 4
    x2+5x=4x^2 + 5x = 4
    x2+5x4=0x^2 + 5x - 4 = 0
    \Rightarrow This is a quadratic equation.

    Option : [C]
    n1=2nn - 1 = 2n
    \Rightarrow This is not a quadratic equation.

    Option : [D]
    1x2(x+2)=x\dfrac{1}{x^2} (x +2) = x
    x+2=x3x +2 = x^3
    x3(x+2)=0x^3 - (x + 2)=0
    x3x2=0x^3 - x - 2 = 0
    \Rightarrow This is not a quadratic equation.

    \therefore Answer is option [B][B]
  • Question 3
    1 / -0
    The integral values of m m  for which the roots of the equation  mx2+(2m1)x+(m2)=0 m x^{2}+(2 m-1) x+(m-2)=0  are rational are given by the expression [where  n n is integer ] 
    Solution
    Discriminant D=(2m1)24(m2)m=4m+1 D=(2 m-1)^{2}-4(m-2) m=4 m+1 must be perfect square. Hence,
    4m+1=k2, 4 m+1=k^{2}, say for some kI k \in I
    m=(k1)(k+1)4 \Rightarrow \quad m=\dfrac{(k-1)(k+1)}{4}
    Clearly, k k must be odd. Let k=2n+1 k=2 n+1
    m=2n(2n+2)4=n(n+1),nI \therefore \quad m=\dfrac{2 n(2 n+2)}{4}=n(n+1), n \in I
  • Question 4
    1 / -0
    Which of the following is not a quadratic equation?
    Solution
    The correct answer is option (C)(C).
    Main concept used: An equation will not be a quadratic in which a = 0 in equation of the form ax2ax^{2} + bx + c = 0

    (a) Given equation is 2(x1)2=4x22x+12(x-1)^{2} = 4x^{2} - 2x + 1
    2[(x)2+(1)22(x)(1)]4x2+2x1=0\Rightarrow 2[(x)^{2} + (1)^{2} - 2(x)(1)] - 4x^{2} + 2x - 1 = 0
    2x2+24x4x2+2x1=0\Rightarrow 2x^{2} + 2 - 4x -4x^{2} + 2x - 1 = 0
    2x22x+1=0\Rightarrow -2x^{2} - 2x + 1 = 0
    \therefore Given equation is quadratic as it is of the form ax2+bx+c=0ax^{2} + bx + c = 0 and a0a\neq 0

    (b) The given equation is 2xx2=x2+52x - x^{2} = x^{2} + 5
    2xx2x25=0\Rightarrow 2x - x^{2} - x^{2} - 5 = 0
    2x2+2x5=0\Rightarrow -2x^{2} + 2x - 5 = 0
    2x22x+5=0\Rightarrow 2x^{2} - 2x + 5 = 0
    \therefore Given equation is quadratic, as it is of the form ax2+bx+c=0ax^{2} + bx + c = 0 and a0.a\neq0.

    (c) The given equation is (2x+3)2+x2=3x25x(\sqrt{2}x + \sqrt{3})^{2} + x^{2} = 3x^{2} - 5x
    (2x)2+(3)2+2(2x)(3)+x23x25x=0\Rightarrow (\sqrt{2}x)^{2} + (\sqrt{3})^{2} + 2(\sqrt{2}x)(\sqrt{3}) + x^{2} - 3x^{2} -5x = 0
    2x2+3+26x+x23x2+5x=0\Rightarrow 2x^{2} + 3 + 2\sqrt{6}x + x^{2} - 3x^{2} + 5x = 0
    0+(26+5)x+3=0\Rightarrow 0 + (2\sqrt{6} + 5)x + 3 = 0
    As a=0,a = 0, the given equation is not quadratic

    (d) Given equation is (x2+2x)2=x4+3+4x3(x^{2} + 2x)^{2} = x^{4} + 3 +4x^{3}
    (x2)2+(2x)2+2(x2)2(2x)x434x3=0\Rightarrow (x^{2})^{2} + (2x)^{2} + 2(x^{2})^{2} (2x) - x^{4} - 3 - 4x^{3} = 0
    x4+4x2+4x3x434x3=0\Rightarrow x^{4} + 4x^{2} + 4x^{3} - x^{4} - 3 -4x^{3} = 0
    4x23=0\Rightarrow 4x^{2} - 3 = 0
    \therefore Given equation is quadratic, as it is of the form ax2+bx+c=0ax^{2} + bx + c = 0 and a0.a\neq0.
  • Question 5
    1 / -0
    Which of the following is a quadratic equation?
    Solution
    The correct answer is option (D)(D)
    Main concept used : An equation of the form ax2+bx+c=0ax^{2} + bx + c = 0 where, a,b,c,a, b, c, are numbers and a0a\neq0, is called a quadratic equation.

    (a)(a) x2+2x+1=(4x)2+3x^{2} + 2x + 1 = \left ( 4-x \right )^{2} + 3
    x2+2x+1=(4)2+(x)22(4)(x)+3\Rightarrow x^{2} + 2x + 1 = (4)^{2} + (x)^{2} -2(4) (x) + 3
    2x+1=168x+3\Rightarrow 2x + 1 = 16 - 8x + 3
    \therefore Coefficient of x2x^{2} is zero or a = 0. So, it is not a quadratic equation.

    (b) 2x2=(5x)(2x25)-2x^{2} = (5 - x) \left ( 2x - \dfrac{2}{5} \right )
    2x2=10x22x2+25x\Rightarrow -2x^{2} = 10x - 2 -2x^{2} + \dfrac{2}{5}x
    2x2+2x2=10x2+22x\Rightarrow -2x^{2} + 2x^{2} = 10x - 2 + \dfrac{2}{2}x
    0=10x2+25x\Rightarrow 0 = 10x - 2 + \dfrac{2}{5}x
    As the coefficient of x2x^{2} in the above equation is zero or a=0.a = 0.
    So, it is not a quadratic equation.

    (c)(c) (k+1)x2+32x=7(k + 1)x^{2} + \dfrac{3}{2}x = 7 (where k=1k = -1)
    (1+1)x2+32x=7\Rightarrow (-1 + 1)x^{2} + \dfrac{3}{2}x = 7
    So, the coefficient of x2x^{2} is zero or a=0a = 0. Hence, the equation in not quadratic.

    (d) x3x2=(x1)3x^{3} - x^{2} = (x-1)^{3}
    x3x2=(x)3(1)33(x)2(1)+3(x)(1)2\Rightarrow x^{3} - x^{2} = (x)^{3} - (1)^{3} - 3 (x)^{2}(1) + 3(x) (1)^{2}
    x3x2=x313x2+3x\Rightarrow x^{3} - x^{2} = x^{3} - 1 - 3x^{2} + 3x
    x2=13x2+3x\Rightarrow-x^{2} = -1 - 3x^{2} + 3x
    2x23x+1=0\Rightarrow2x^{2} - 3x + 1 = 0
    As the coefficient of x2x^{2} in the above equation is 22 or a=2a = 2, so it is a quadratic equation.
  • Question 6
    1 / -0
    Which among the below are quadratic equations?

    Solution

  • Question 7
    1 / -0
    Discriminant of quadratic equation 33x2+10x+3=03\sqrt 3x^2+10x+\sqrt 3=0
    Solution
    Comparing 33x2+10x+33\sqrt 3x^2+10x+\sqrt 3 by ax2+bx+c=0ax^2+bx+c=0.
    a=3,b=10a=\sqrt 3, b=10 and c=3c=\sqrt 3
    Discriminant (D)=b24ac(D)=b^2-4ac
    =(10)24×33×3=(10)^2-4\times 3\sqrt 3 \times \sqrt 3
    =1004×3×3=100-4\times 3\times 3
    =10036=100-36
    =64=64
    Hence, option (B) is correct.
  • Question 8
    1 / -0
    All solutions of the equation  4x240x+51 =0\displaystyle 4x^2 - 40x + 51  = 0 lie in the interval 
  • Question 9
    1 / -0
    The values of aa for which both the roots of the equation (a6)x2=a(x3)(a-6)x^2=a(x-3)  are positive and are given by
    Solution
    The given equation is (a6)x2ax+3a=0(a-6){x}^{2}-ax+3a=0
     D=a24(a6).3a>00<a<7211\displaystyle D={ a }^{ 2 }-4\left( a-6 \right) .3a>0\Rightarrow 0<a<\frac { 72 }{ 11 }    ...(i)
    Since, both the roots are positive, so sum & product of roots are positive
    \therefore  α+β=aa6>0a<0\displaystyle \alpha +\beta =\frac { a }{ a-6 } >0\Rightarrow a<0 or a>6a>6    ...(ii)
    and  αβ=3aa6>0a<0\displaystyle \alpha \beta =\frac { 3a }{ a-6 } >0\Rightarrow a<0 or a>6a>6
     6<a<7211\displaystyle \therefore 6<a<\frac { 72 }{ 11 }    [[From Eqs.(i) and (ii)]]

    a =  (6,7211 )\displaystyle \left( 6,\frac { 72 }{ 11 }  \right)
  • Question 10
    1 / -0
    The roots of (xa)(xc)+k(xb)(xd)=0(x-a)(x-c)+k(x-b)(x-d)=0 are real and distinct for all real kk if 
    Solution

    The   roots   of   (xa)(xc)+k(xb)(xd)=0(x-a)(x-c)+k(x-b)(x-d)=0   are   real   and   distinct for   all   real   kk

    f(x)=(1+k)x2(a+c+k(b+d))x+ac+kbdf(x)=(1+k){ x }^{ 2 }-(a+c+k(b+d))x+ac+kbd 

    As D>0D>0 for   real   roots. 

    So  ,

    \Rightarrow (a+c+k(b+d))24(1+k)(ac+kbd)>0{(a+c+k(b+d)) }^{ 2}-4(1+k)(ac+kbd)>0

    \Rightarrow (b+d)2k2+2(a+c)(b+d)k+(a+c)24(bdk2+(ac+bd)k+ac)>0(b+d)^{ 2 }{ k }^{ 2}+2(a+c)(b+d)k+(a+c)^{ 2 }-4(bd{ k }^{ 2 }+(ac+bd)k+ac)>0

     \Rightarrow (bd)2k2+(2(a+c)(b+d)4(ac+bd))k+(ac)2>0  (b-d)^{ 2 }{ k }^{ 2}+(2(a+c)(b+d)-4(ac+bd))k+(a-c)^{ 2 }>0  

    This   true   for   all   kk

    D<0D<0

    (2(a+c)(b+d)4(ac+bd))24((ac)(bd))2<0(2(a+c)(b+d)-4(ac+bd))^{ 2 }-4((a-c)(b-d))^{ 2 }<0

    ((a+c)(b+d)2(ac+bd))2((ac)(bd))2<0((a+c)(b+d)-2(ac+bd))^{ 2 }-((a-c)(b-d))^{ 2 }<0


    Applying   a2b2=(ab)(a+b){a }^{ 2 }-b^{ 2 }=(a-b)(a+b) we   get,

    \Rightarrow ((a+c)(b+d)2(ac+bd)+(ac)(bd))((a+c)(b+d)2(ac+bd)(ac)(bd))<0((a+c)(b+d)-2(ac+bd)+(a-c)(b-d))((a+c)(b+d)-2(ac+bd)-(a-c)(b-d))<0

    \Rightarrow (ab+ad+bc+cd2ac2bd+abadbc+cd)(ab+ad+bc+cd2ac2bdab+ad+bccd)<0(ab+ad+bc+cd-2ac-2bd+ab-ad-bc+cd)(ab+ad+bc+cd-2ac-2bd-ab+ad+bc-cd)<0

    \Rightarrow (ab+cdacbd)(ad+bcacbd)<0(ab+cd-ac-bd)(ad+bc-ac-bd)<0

    \Rightarrow (ad)(bc)(ab)(dc)<0(a-d)(b-c)(a-b)(d-c)<0

    \Rightarrow a<b<c<da<b<c<d

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now