Self Studies

Quadratic Equations Test - 42

Result Self Studies

Quadratic Equations Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha$$ and $$\beta$$ are roots of the equation $$x^2 + \sin \theta . 2 \sin \theta = 0 $$ then $$\dfrac{\alpha^{12} + \beta^{12}}{(\alpha^{-12} + \beta^{-12})(\alpha - \beta)^{24}}$$ is equal to 
    Solution
    $$x^2 + x\sin \theta  - 2 \sin \theta = 0$$, has roots $$\alpha$$ and $$\beta$$
    $$\dfrac{\alpha^{12}+\beta^{12}}{(\alpha^{-12}+\beta^{-12})(\alpha - \beta)^{24}} = \dfrac{\alpha^{12} . \beta^{12}}{(\alpha - \beta)^{24}} = \dfrac{(\alpha \beta)^{12}}{(\alpha - \beta)^{24}}$$
    $$ = \dfrac{(-2\sin \theta)^{12}}{(\sqrt{\sin^2 \theta + 8 \sin \theta})^{24}} = \dfrac{2^{12}}{(8 + \sin \theta)^{12}}$$
  • Question 2
    1 / -0
    Which one of the following is the quadratic equation?
    Solution
    Option : [A]
    $$\dfrac{5}{x} - 3 = x^2$$
    $$\dfrac{5 - 3x}{x} = x^2$$
    $$5 - 3x = x^3$$
    $$x^3 + 3x - 5 = 0$$
    $$\Rightarrow $$ This is not a quadratic equation.

    Option : [B]
    $$x (x + 5) = 4$$
    $$x^2 + 5x = 4$$
    $$x^2 + 5x - 4 = 0$$
    $$\Rightarrow $$ This is a quadratic equation.

    Option : [C]
    $$n - 1 = 2n$$
    $$\Rightarrow $$ This is not a quadratic equation.

    Option : [D]
    $$\dfrac{1}{x^2} (x +2) = x$$
    $$x +2 = x^3$$
    $$x^3 - (x + 2)=0$$
    $$x^3 - x - 2 = 0$$
    $$\Rightarrow $$ This is not a quadratic equation.

    $$\therefore$$ Answer is option $$[B]$$
  • Question 3
    1 / -0
    The integral values of $$ m $$ for which the roots of the equation $$ m x^{2}+(2 m-1) x+(m-2)=0 $$ are rational are given by the expression [where $$ n$$ is integer ] 
    Solution
    Discriminant $$ D=(2 m-1)^{2}-4(m-2) m=4 m+1 $$ must be perfect square. Hence,
    $$ 4 m+1=k^{2}, $$ say for some $$ k \in I $$
    $$ \Rightarrow \quad m=\dfrac{(k-1)(k+1)}{4} $$
    Clearly, $$ k $$ must be odd. Let $$ k=2 n+1 $$
    $$ \therefore \quad m=\dfrac{2 n(2 n+2)}{4}=n(n+1), n \in I $$
  • Question 4
    1 / -0
    Which of the following is not a quadratic equation?
    Solution
    The correct answer is option $$(C)$$.
    Main concept used: An equation will not be a quadratic in which a = 0 in equation of the form $$ax^{2}$$ + bx + c = 0

    (a) Given equation is $$2(x-1)^{2} = 4x^{2} - 2x + 1$$
    $$\Rightarrow 2[(x)^{2} + (1)^{2} - 2(x)(1)] - 4x^{2} + 2x - 1 = 0$$
    $$\Rightarrow 2x^{2} + 2 - 4x -4x^{2} + 2x - 1 = 0$$
    $$\Rightarrow -2x^{2} - 2x + 1 = 0$$
    $$\therefore $$ Given equation is quadratic as it is of the form $$ax^{2} + bx + c = 0$$ and $$a\neq 0$$

    (b) The given equation is $$2x - x^{2} = x^{2} + 5$$
    $$\Rightarrow 2x - x^{2} - x^{2} - 5 = 0$$
    $$\Rightarrow -2x^{2} + 2x - 5 = 0$$
    $$\Rightarrow 2x^{2} - 2x + 5 = 0$$
    $$\therefore $$ Given equation is quadratic, as it is of the form $$ax^{2} + bx + c = 0$$ and $$a\neq0.$$

    (c) The given equation is $$(\sqrt{2}x + \sqrt{3})^{2} + x^{2} = 3x^{2} - 5x$$
    $$\Rightarrow (\sqrt{2}x)^{2} + (\sqrt{3})^{2} + 2(\sqrt{2}x)(\sqrt{3}) + x^{2} - 3x^{2} -5x = 0$$
    $$\Rightarrow 2x^{2} + 3 + 2\sqrt{6}x + x^{2} - 3x^{2} + 5x = 0$$
    $$\Rightarrow 0 + (2\sqrt{6} + 5)x + 3 = 0$$
    As $$a = 0,$$ the given equation is not quadratic

    (d) Given equation is $$(x^{2} + 2x)^{2} = x^{4} + 3 +4x^{3}$$
    $$\Rightarrow (x^{2})^{2} + (2x)^{2} + 2(x^{2})^{2} (2x) - x^{4} - 3 - 4x^{3} = 0$$
    $$\Rightarrow x^{4} + 4x^{2} + 4x^{3} - x^{4} - 3 -4x^{3} = 0$$
    $$\Rightarrow 4x^{2} - 3 = 0$$
    $$\therefore $$ Given equation is quadratic, as it is of the form $$ax^{2} + bx + c = 0$$ and $$a\neq0.$$
  • Question 5
    1 / -0
    Which of the following is a quadratic equation?
    Solution
    The correct answer is option $$(D)$$
    Main concept used : An equation of the form $$ax^{2} + bx + c = 0$$ where, $$a, b, c,$$ are numbers and $$a\neq0$$, is called a quadratic equation.

    $$(a)$$ $$x^{2} + 2x + 1 = \left ( 4-x \right )^{2} + 3$$
    $$\Rightarrow x^{2} + 2x + 1 = (4)^{2} + (x)^{2} -2(4) (x) + 3$$
    $$\Rightarrow 2x + 1 = 16 - 8x + 3$$
    $$\therefore$$ Coefficient of $$x^{2}$$ is zero or a = 0. So, it is not a quadratic equation.

    (b) $$-2x^{2} = (5 - x) \left ( 2x - \dfrac{2}{5} \right )$$
    $$\Rightarrow -2x^{2} = 10x - 2 -2x^{2} + \dfrac{2}{5}x$$
    $$\Rightarrow -2x^{2} + 2x^{2} = 10x - 2 + \dfrac{2}{2}x$$
    $$\Rightarrow 0 = 10x - 2 + \dfrac{2}{5}x$$
    As the coefficient of $$x^{2}$$ in the above equation is zero or $$a = 0.$$
    So, it is not a quadratic equation.

    $$(c)$$ $$(k + 1)x^{2} + \dfrac{3}{2}x = 7$$ (where $$k = -1$$)
    $$\Rightarrow (-1 + 1)x^{2} + \dfrac{3}{2}x = 7$$
    So, the coefficient of $$x^{2}$$ is zero or $$a = 0$$. Hence, the equation in not quadratic.

    (d) $$x^{3} - x^{2} = (x-1)^{3}$$
    $$\Rightarrow x^{3} - x^{2} = (x)^{3} - (1)^{3} - 3 (x)^{2}(1) + 3(x) (1)^{2}$$
    $$\Rightarrow x^{3} - x^{2} = x^{3} - 1 - 3x^{2} + 3x$$
    $$\Rightarrow-x^{2} = -1 - 3x^{2} + 3x$$
    $$\Rightarrow2x^{2} - 3x + 1 = 0$$
    As the coefficient of $$x^{2}$$ in the above equation is $$2$$ or $$a = 2$$, so it is a quadratic equation.
  • Question 6
    1 / -0
    Which among the below are quadratic equations?

    Solution

  • Question 7
    1 / -0
    Discriminant of quadratic equation $$3\sqrt 3x^2+10x+\sqrt 3=0$$
    Solution
    Comparing $$3\sqrt 3x^2+10x+\sqrt 3$$ by $$ax^2+bx+c=0$$.
    $$a=\sqrt 3, b=10$$ and $$c=\sqrt 3$$
    Discriminant $$(D)=b^2-4ac$$
    $$=(10)^2-4\times 3\sqrt 3 \times \sqrt 3$$
    $$=100-4\times 3\times 3$$
    $$=100-36$$
    $$=64$$
    Hence, option (B) is correct.
  • Question 8
    1 / -0
    All solutions of the equation $$\displaystyle 4x^2 - 40x + 51  = 0$$ lie in the interval 
  • Question 9
    1 / -0
    The values of $$a$$ for which both the roots of the equation $$(a-6)x^2=a(x-3)$$  are positive and are given by
    Solution
    The given equation is $$(a-6){x}^{2}-ax+3a=0$$
    $$\displaystyle D={ a }^{ 2 }-4\left( a-6 \right) .3a>0\Rightarrow 0<a<\frac { 72 }{ 11 } $$    ...(i)
    Since, both the roots are positive, so sum & product of roots are positive
    $$\therefore$$ $$\displaystyle \alpha +\beta =\frac { a }{ a-6 } >0\Rightarrow a<0$$ or $$a>6$$    ...(ii)
    and $$\displaystyle \alpha \beta =\frac { 3a }{ a-6 } >0\Rightarrow a<0$$ or $$a>6$$
    $$\displaystyle \therefore 6<a<\frac { 72 }{ 11 } $$    $$[$$From Eqs.(i) and (ii)$$]$$

    a = $$\displaystyle \left( 6,\frac { 72 }{ 11 }  \right) $$
  • Question 10
    1 / -0
    The roots of $$(x-a)(x-c)+k(x-b)(x-d)=0$$ are real and distinct for all real $$k$$ if 
    Solution

    The   roots   of   $$(x-a)(x-c)+k(x-b)(x-d)=0$$   are   real   and   distinct for   all   real   $$k$$

    $$f(x)=(1+k){ x }^{ 2 }-(a+c+k(b+d))x+ac+kbd$$ 

    As $$D>0$$ for   real   roots. 

    So  ,

    $$\Rightarrow$$ $${(a+c+k(b+d)) }^{ 2}-4(1+k)(ac+kbd)>0$$

    $$\Rightarrow$$ $$(b+d)^{ 2 }{ k }^{ 2}+2(a+c)(b+d)k+(a+c)^{ 2 }-4(bd{ k }^{ 2 }+(ac+bd)k+ac)>0$$

     $$\Rightarrow$$ $$(b-d)^{ 2 }{ k }^{ 2}+(2(a+c)(b+d)-4(ac+bd))k+(a-c)^{ 2 }>0  $$

    This   true   for   all   $$k$$

    $$D<0$$

    $$(2(a+c)(b+d)-4(ac+bd))^{ 2 }-4((a-c)(b-d))^{ 2 }<0$$

    $$((a+c)(b+d)-2(ac+bd))^{ 2 }-((a-c)(b-d))^{ 2 }<0$$


    Applying   $${a }^{ 2 }-b^{ 2 }=(a-b)(a+b)$$ we   get,

    $$\Rightarrow$$ $$((a+c)(b+d)-2(ac+bd)+(a-c)(b-d))((a+c)(b+d)-2(ac+bd)-(a-c)(b-d))<0$$

    $$\Rightarrow$$ $$(ab+ad+bc+cd-2ac-2bd+ab-ad-bc+cd)(ab+ad+bc+cd-2ac-2bd-ab+ad+bc-cd)<0$$

    $$\Rightarrow$$ $$(ab+cd-ac-bd)(ad+bc-ac-bd)<0$$

    $$\Rightarrow$$ $$(a-d)(b-c)(a-b)(d-c)<0$$

    $$\Rightarrow$$ $$a<b<c<d$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now