Self Studies

Arithmetic Progressions Test - 30

Result Self Studies

Arithmetic Progressions Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The common difference of A.P.: 1,1,3,....1, -1, -3, .... is _______
    Solution
    The common difference d of A.P. is given by the difference between second term and first term.
    d=11=2\therefore d=-1-1=-2
    Option CC is correct. 
  • Question 2
    1 / -0
    If a,ba, b and cc arc in arithmetic progression then bacb\dfrac{b- a}{c - b} is equal to
    Solution
    Solution:
    If a,ba,b and cc are in A.P. then,
    ba=cb=b-a=c-b= common difference
    or, bacb=1\cfrac{b-a}{c-b}=1
    Therefore, CC is the correct option.
  • Question 3
    1 / -0
    Firs term of an arithmetic progression is 22. If the sum of its first five terms is equal to one-fourth of the sum of the next five terms, then the sum of its first 3030 terms is
    Solution
    Given,
    First term a=2a=2 
    According to the problem, first 10 are
    a,a+d,a+2d,a+3d,a+4d,a+5d,a+6d,a+7d,a+8d,a+9da,a+d, a+2d, a+3d,a+4d, a+5d, a+6d, a+7d, a+8d, a+9d
    5a+10d=14(5a+35d)5a+10d=\dfrac{1}{4}(5a+35d)  
    20a+40d=5a+35d20a+40d = 5a+35d
    15a=5d15a = - 5d
    3a=d3a = -d
    As a=2a=2
    d=6d =-6 and n=30n=30
    S30=n2[2(a)+(n1)d]S_{30} = \dfrac{n}{2}[2(a)+(n-1)d]
    S30=302[2(2)+(29)(6)]S_{30} = \dfrac{30}{2}[2(2)+(29)(-6)]
    =2550=-2550

  • Question 4
    1 / -0
    (n2)th(n-2)^{th} term of an arithmetic progression will be __________.
    Solution
    nthn^{th} term of an A.P. is
    Tn=a+(n1)dT_n=a+(n-1)d
    (n2)th\therefore (n-2)^{th} term of an A.P. is
    Tn2=a+(n21)dT_{n-2}=a+(n-2-1)d
    =a+(n3)d=a+(n-3)d
  • Question 5
    1 / -0
    If SrS_{r} denotes the sum of rr terms of an AP and Saa2=Sbb2=c\dfrac {S_{a}}{a^{2}} = \dfrac {S_{b}}{b^{2}} = c then ScS_{c} is
    Solution
    Sr{ S }_{ r } denotes sum of rr terms.
    Saa2=Sbb2a2(2a1+(a1)d)a2=b2(2a1+(b1)d)b22a1a+(a1)da=2a1b+(b1)dbor,2a1a+dda=2a1b+ddbor,2a1(1a1b)=d(1a1b)So,a2(2a1+(a1)da2)=cor,2a1(1+aa)2a=ca1aa=cc=a1Sc=c2(2a1+(c1)d)=c2(2a1+(c1)2a1)=c2(2c+(c1)2c)=c2×2c(1+c1)=c3\cfrac { { S }_{ a } }{ { a }^{ 2 } } =\cfrac { { S }_{ b } }{ { b }^{ 2 } } \\ \cfrac { \cfrac { a }{ 2 } (2{ a }_{ 1 }+(a-1)d) }{ { a }^{ 2 } } =\cfrac { \cfrac { b }{ 2 } (2{ a }_{ 1 }+(b-1)d) }{ { b }^{ 2 } } \\ \cfrac { 2{ a }_{ 1 } }{ a } +\cfrac { (a-1)d }{ a } =\cfrac { 2{ a }_{ 1 } }{ b } +\cfrac { (b-1)d }{ b } \\ or,\cfrac { 2{ a }_{ 1 } }{ a } +d-\cfrac { d }{ a } =\cfrac { 2{ a }_{ 1 } }{ b } +d-\cfrac { d }{ b } \\ or,2{ a }_{ 1 }(\cfrac { 1 }{ a } -\cfrac { 1 }{ b } )=d(\cfrac { 1 }{ a } -\cfrac { 1 }{ b } )\\ So,\cfrac { a }{ 2 } (\cfrac { 2{ a }_{ 1 }+(a-1)d }{ { a }^{ 2 } } )=c\\ or,2{ a }_{ 1 }\cfrac { (1+a-a) }{ 2a } =c\\ \cfrac { { a }_{ 1 }a }{ a } =c\\ c={ a }_{ 1 }\\ { S }_{ c }=\cfrac { c }{ 2 } (2{ a }_{ 1 }+(c-1)d)\\ =\cfrac { c }{ 2 } (2{ a }_{ 1 }+(c-1)2{ a }_{ 1 })\\ =\cfrac { c }{ 2 } (2c+(c-1)2c)\\ =\cfrac { c }{ 2 } \times 2c(1+c-1)\\ ={ c }^{ 3 }
    Answer (A)(A)
  • Question 6
    1 / -0
    Find the sum of the first 2525 terms of an A.P whose nnth term is given by an=83n{a}_{n}=8-3n
    Solution
    an=83na_{n}=8-3n

    a1=5a_{1}=5

    a2=2a_{2}=2

    d=25=3d=2-5=-3

    Thus, S25=252[10+24(3)]S_{25}=\dfrac{25}{2}[10+24(-3)]

    =252×62=775=\dfrac{25}{2} \times -62=-775

    Hence, option A is correct.
  • Question 7
    1 / -0
    If 23,k,58\dfrac{2}{3},k, \dfrac{5}{8} are in AP, find the value of k.
    Solution
    23,k,58\dfrac{2}{3},k, \dfrac{5}{8} are in AP.

    Thus, k23=58kk-\dfrac {2}{3} = \dfrac{5}{8}-k

    2k=23+582k=\dfrac{2}{3}+\dfrac{5}{8}

    2k=31242k=\dfrac{31}{24}

    k=3148k=\dfrac{31}{48}.
  • Question 8
    1 / -0
    Find the number of terms of the A.P 12,9,6,.....,21-12,-9,-6,.....,21. If 11 is added to each term of this A.P., then find the sum of all terms of the A.P thus obtained.
    Solution
    From given series, we have,

    an=a+(n1)da_n=a+(n-1)d

    21=12+(n1)321=-12+(n-1)3

    n=21+123+1n=\dfrac{21+12}{3}+1

    n=12\therefore n=12

    upon adding 11 to the series, we get,

    11,8,5,.............,22-11,-8,-5,.............,22

    Sn=n2(a+l)S_n=\dfrac{n}{2}(a+l)

    Sn=122(11+22)S_n=\dfrac{12}{2}(-11+22)

    Sn=66\therefore S_n=66
  • Question 9
    1 / -0
    There are 2020 rows of seats in a conference hall with 2020 seats in the first row, 2121 seats in the second row, 2222 seats in the third row and so on. In total, how many seats are there in the conference hall?
    Solution
    Given:-
    Total number of rows (n)=20(n) = 20
    Seats in first row (a)=20(a) = 20
    Seats in second row (a2)=21({a}_{2}) = 21
    Seats in third row (a3)=22({a}_{3})= 22
     Common difference (d)=a3a2=2221=1(d) = {a}_{3} - {a}_{2}= 22-21 = 1 
    Total number of seats in conference hall (Sn)=n2(2a+(n1)d)\Rightarrow \text{Total number of seats in conference hall } ({S}_{n}) = \cfrac{n}{2} \left(2a + \left(n-1\right)d \right)
    S20=202(2×20+(201)×1)\Rightarrow {S}_{20} = \cfrac{20}{2} \left(2 \times 20 + \left(20 - 1 \right) \times 1 \right)
    S20=10(40+19)=10×59=590\Rightarrow {S}_{20} = 10 \left(40 +19 \right) = 10 \times 59 = 590
    Hence correct answer is 590.
  • Question 10
    1 / -0
    Find the sum of the first 1515 terms of the sequence having nnth term as
    yn=95n{ y }_{ n }=9-5n\quad
    Solution
    yn=95ny_{n}=9-5n

    y1=95=4y_{1}=9-5=4

    y2=910=1y_{2}=9-10=-1

    d=y2y1=14=5d=y_{2}-y_{1}=-1-4=-5

    Thus, S15=152[2(4)+14(5)]S_{15}=\dfrac{15}{2}[2(4)+14(-5)]

    =152[870]=465=\dfrac{15}{2}[8-70]=-465
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now