Self Studies

Triangles Test - 16

Result Self Studies

Triangles Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the above figure, if DE || BC, then x equals :

    Solution

    In $$\triangle ADE$$ and $$\triangle ABC$$

    $$\angle ADE=\angle ABC$$  (As $$DE\parallel BC$$ Corresponding angles)

    $$\angle AED=\angle ACB$$ (As $$DE\parallel BC$$ Corresponding angles

    $$\angle DAE=\angle BAC$$  (common angle)

    $$\therefore \triangle ADE\sim \triangle ABC $$ by AAA similarity.
    If two triangles are similar, then their corresponding sides are proportional.

    $$\ \Rightarrow \dfrac { AD }{ AB } =\dfrac { DE }{ BC } \\ \ \;\;\dfrac { 3 }{ 7 } =\dfrac { x }{ 14 } \\ \;\;\;x =\frac{3\times 14}{7}\\ \Rightarrow x=6$$

     

  • Question 2
    1 / -0
    Which of the following cannot be the sides a right angle triangle?
    Solution
    In option $$D$$ Pythagoras theorem is not satisfied , So the sides can not be sides of right angled triangle
    $${ 9 }^{ 2 }\neq { 5 }^{ 2 }+{ 7 }^{ 2 }\\ 81\neq 25+49\\ 81\neq 74$$
    So option $$D$$ is correct.

  • Question 3
    1 / -0
    In the given figure, the value of x (in cm) is :

    Solution

    $$\dfrac { PA }{ PQ } =\dfrac { 2.4 }{ 6 } =\dfrac { 2 }{ 5 } \\ \dfrac { PB }{ PR } =\dfrac { 3.2 }{ 8 } =\dfrac { 2 }{ 5 } \\ \Rightarrow \dfrac { PA }{ PQ } =\dfrac { PB }{ PR } $$

    $$\angle APB=\angle QPR$$

    So, By SAS property

    $$\therefore \triangle APB\sim \triangle QPR \\ \Rightarrow \dfrac { PA }{ PQ } =\dfrac { PB }{ PR } =\dfrac { AB }{ QR } \\ \dfrac { 2 }{ 5 } =\dfrac { 2 }{ x } \\ \Rightarrow x=5cm$$

     

  • Question 4
    1 / -0
    In the figure given above, if DE $$ \parallel$$  BC, then the value of x equals to:

    Solution

    In $$\triangle ADE$$ and $$\triangle ABC$$

    $$\angle ADE=\angle ABC$$ (As $$DE\parallel BC$$) Corresponding angles

    $$\angle AED=\angle ACB$$ (As $$DE\parallel BC$$) Corresponding angles

    $$\angle DAE=\angle BAC$$  (common angle)

    $$\therefore \triangle ADE\sim \triangle ABC $$  by AAA rule

    $$\therefore \dfrac{AD}{AB} = \dfrac{DE}{BC}$$

    $$\therefore \dfrac { 3 }{ 2+3 } =\dfrac { 4 }{ x } \\ \Rightarrow x=6.7cm$$

  • Question 5
    1 / -0
    In $$\Delta ABC,$$ if $$AB =6\sqrt{3}$$ cm, $$AC=12$$ cm and $$BC=6$$ cm, then angle B is equal to:
    Solution
    $$AC$$ is the longest side
    $$AC=12\\ \Rightarrow { \left( AC \right)  }^{ 2 }=144\\ AB=6\sqrt { 3 } ,BC=6\\ \Rightarrow { \left( AB \right)  }^{ 2 }+{ \left( BC \right)  }^{ 2 }={ \left( 6\sqrt { 3 }  \right)  }^{ 2 }+{ 6 }^{ 2 }=108+36=144\\ \Rightarrow { \left( AC \right)  }^{ 2 }={ \left( AB \right)  }^{ 2 }+{ \left( BC \right)  }^{ 2 }$$
    We can see that pythagoras theorem is applicable in the given triangle.
    So, by converse of pythagoras theorem, we have $$ \angle B=90^{\circ}$$ as $$\angle B$$ is opposite to the longest side $$AC$$.
  • Question 6
    1 / -0
    The areas of two similar triangles ABC and PQR are $$25\ cm^{2}\ \& \  49\ cm^{2}$$, respectively. If QR $$=9.8$$ cm, then BC is:
    Solution

    Given: $$\dfrac { ar(ABC) }{ ar(PQR) } =\dfrac { 25 }{ 49 } $$

    In two similar triangles, the ratio of their areas will be equal to the square of the ratio of their sides.


    Hence in $$\triangle ABC$$ and $$\triangle PQR,$$

    $$\Rightarrow {\left( \dfrac{BC}{QR} \right)}^2=\dfrac{ar \triangle ABC}{ar \triangle PQR}$$

    $$\Rightarrow { \left( \dfrac { BC }{ QR }  \right)  }^{ 2 }=\dfrac { 25 }{ 49 }$$

    $$\Rightarrow \,\,\,\,\,\,\,\,\,\,\dfrac { BC }{ QR } =\dfrac { 5 }{ 7 }$$

    $$\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\dfrac { BC }{ 9.8 } =\dfrac { 5 }{ 7 }$$

    $$\Rightarrow\,\,\,\,\,\,\,\,\,\,\,\,\, BC=\dfrac { 5 }{ 7 } \times 9.8=7$$

     

  • Question 7
    1 / -0
    Let $$\triangle$$ABC ~ $$\triangle$$PQR. If area(ABC) = 2.25 $$m^{2}$$, area(PQR) = 6.25 $$m^{2}$$, PQ = 0.5 $$m$$, then length of AB is:
    Solution

    $$\dfrac { ar(ABC) }{ ar(PQR) } =\dfrac { 2.25 }{ 6.25 } $$

    In two similar triangles, the ratio of their areas is the square of the ratio of their sides

    $$\Rightarrow { \left( \dfrac { AB }{ PQ }  \right)  }^{ 2 }=\dfrac { 225 }{ 625 } \\ \Rightarrow \dfrac { AB }{ PQ } =\dfrac { 15 }{ 25 } \\ \Rightarrow \dfrac { AB }{0 .5 } =\dfrac { 3 }{ 5 } \\ \Rightarrow AB=0.3m\\ \Rightarrow AB=0.3\times 100=30cm$$

  • Question 8
    1 / -0
    In figure, DE||BC, then the value of x equals to:

    Solution

    Given that, 

    $$DE\parallel BC$$.

    To find out,

    The value of $$x$$.

    In $$\triangle ADE$$ and $$\triangle ABC$$

    $$\angle ADE=\angle ABC$$                   [Corresponding angles]

    $$\angle AED=\angle ACB$$                   [Corresponding angles]

    $$\angle DAE=\angle BAC$$  (common angle) 

    Hence, by AAA criteria

    $$\triangle ADE\sim \triangle ABC\\ \Rightarrow \dfrac { AD }{ AB } =\dfrac { AE }{ AC } \\ \dfrac { 1.5 }{ 4.5 } =\dfrac { 1 }{ 1+x } \\ 1+x=3$$
    $$x=2$$.

    Hence, the value of $$x$$ is $$2$$.
  • Question 9
    1 / -0
    In figure , if $$DE\parallel BC$$, then the value of x is equal to

    Solution

    In $$\triangle ADE$$ and $$\triangle ABC$$

    $$\angle ADE=\angle ABC$$ (As $$DE\parallel BC$$) Corresponding angles

    $$\angle AED=\angle ACB$$ (As $$DE\parallel BC$$) Corresponding angles

    $$\angle DAE=\angle BAC$$  (common angle)

    $$\therefore \triangle ADE\sim \triangle ABC $$ by AAA

    $$ \Rightarrow \dfrac { 3 }{ 7 } =\dfrac { 2 }{ x } \\ \Rightarrow x=4.7cm$$

     

  • Question 10
    1 / -0
    In a $$\Delta$$PQR, right angled at Q, PQ$$ =$$ 24 cm and QR$$ =$$ 7 cm. S is the mid point of PR, then RS is :

    Solution
    In $$\triangle PQR$$
    $${ \left( PQ \right)  }^{ 2 }+{ \left( QR \right)  }^{ 2 }={ { \left( PR \right)  } }^{ 2 }\\ { \left( 24 \right)  }^{ 2 }+{ \left( 7 \right)  }^{ 2 }={ { \left( PR \right)  } }^{ 2 }\\ \Rightarrow { { \left( PR \right)  } }^{ 2 }=576+49=625\\ \Rightarrow PR=25$$
    Now $$S$$ is the mid point of $$PR$$
    $$\therefore RS=\dfrac { PR }{ 2 } =\dfrac { 25 }{ 2 } =12.5cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now