Self Studies

Triangles Test - 25

Result Self Studies

Triangles Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the corresponding sides of two triangles are proportional, then the two triangles are similar by which test
    Solution
    In $$\triangle ABC$$ and $$\triangle DEF$$, if the corresponding sides are proportional

    $$\Rightarrow \dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{CA}{FD}$$ 

    $$\Rightarrow$$ The triangles are similar by SSS rule
  • Question 2
    1 / -0
    In $$\triangle ABC$$ and $$\triangle PQR$$, $$\angle A=\angle R, \angle B=\angle Q, AB=28, BC=10, AC=24, PQ=5$$ and $$QR= 14$$. Then the length of the side $$PR$$ is :
    Solution

     Considering the triangles $$\Delta ABC$$  and $$\Delta PQR$$

    $$\angle A = \angle R $$  ....Given

    $$\angle B = \angle Q   $$.  Given

    If two of their angles are equal, then the third angle must also be equal, because angles of a triangle always add to make 180

    $$\Rightarrow \angle C = \angle P $$    

    So, by $$ AAA$$  similarity 

    $$\Delta ABC  $$  $$\sim $$  $$\Delta RQP$$

    the lengths of the corresponding sides of two similar triangles are proportional.

    $$\Rightarrow \dfrac{AB}{QR} = \dfrac{AC}{PR} =\dfrac{BC}{PQ}$$

    $$\dfrac{AC}{PR} =\dfrac{BC}{PQ}$$

    $$\Rightarrow \dfrac{24}{PR} = \dfrac{10}{5} $$

    $$\Rightarrow PR = 12$$

  • Question 3
    1 / -0
    If ratio of heights of two similar triangles is $$4:9$$, then ratio between their areas is?
    Solution
    Altitudes of similar triangles are in ratio $$4:9$$
    Hence, area of these triangles $$=$$ square of the ratio of their heights or altitudes
    $$=(4:9)^2$$
    $$=16:81$$
    Option $$(4)$$.
  • Question 4
    1 / -0
    State the criterion using which the above triangles are similar.

    Solution
    Let us first write the sides in proportions
    $$\dfrac { AC }{ DF } =\dfrac { AB }{ DE } =\dfrac { CB }{ FE } \\ \Rightarrow \dfrac { 2 }{ 1 } =\dfrac { 4 }{ 2 } =\dfrac { 6 }{ 3 } \\ \Rightarrow 2=2=2\\ \therefore \triangle ACB\sim \triangle DFE$$
    We get all sides in proportion so the given triangles are similar by $$SSS$$ criterion .
    Option $$D$$ is correct
  • Question 5
    1 / -0
    In the given $$\Delta$$ $$ABC$$, if $$AB$$ $$=$$ $$AC$$ and $$BD$$ $$=$$ $$DC$$, then $$\angle$$ $$ADC$$ $$=$$ ___________.

    Solution
    Considering the triangles $$\Delta ABD$$  and $$\Delta ACD$$
    $$AB=AC$$  ....Given 
    $$BD=DC$$  .....Given 
    $$AD=AD$$  ....Common
    So, by $$SSS$$  congruency 
    $$\Delta ABD  $$  $$\cong $$  $$\Delta ACD$$  
    Corresponding sides and angles  of congruent triangles are also equal 
    $$\Rightarrow \angle ADC = \angle ADB $$
    We know that $$BDC$$ is a straight line 
    $$\angle ADC+ \angle ADB  = 180^{\circ}$$

    $$\Rightarrow 2\angle ADC  = 180^{\circ}$$
    $$\Rightarrow \angle ADC  = 90^{\circ}$$
  • Question 6
    1 / -0
    If all three angles in one triangle are the same as the corresponding angles in another triangle, then the triangles are similar by which test ?
    Solution
    It all the angles in triangle are same as the corresponding angle in the other triangle , then the triangles are similar by $$AAA$$ similarity criteria.
    So option $$C$$ is correct.
  • Question 7
    1 / -0
    In $$\triangle ADE, \angle D=90^{o}, BC=6$$ and $$AB=10=BD$$. Then, find $$x$$.

    Solution

    given that  $$\angle D =  90^{\circ} $$   $$ BC = 6 ,AB=10=BD$$

    Considering the triangles $$\Delta ADE$$  and $$\Delta ABC$$

    $$\angle D = \angle B = 90^{\circ} $$  ....GIVEN in figure 

    And they are corresponding angles and equal 

    $$\Rightarrow $$ BC is parallel to DE

    $$\angle E = \angle C   $$....corresponding angles of  parallel lines BC and DE.

    $$\angle A = \angle A $$  ..... common angle 

    So, by $$ AAA$$  similarity 

    $$\Delta ABC  $$  $$\sim $$  $$\Delta ADE$$

    the lengths of the corresponding sides of two similar triangles are proportional.

    $$\Rightarrow \dfrac{AB}{AD} = \dfrac{AC}{AE} =\dfrac{BC}{DE}$$

    $$\Rightarrow \dfrac{10}{20} =\dfrac{6}{x}$$

    On solving above we get 

    $$x=12$$

  • Question 8
    1 / -0
    In $$\triangle ADE, \angle D=90^{o}$$, find $$x$$.

    Solution

    Considering the triangles $$\Delta ADE$$  and $$\Delta ABC$$

    $$\angle D = \angle B = 90^{\circ} $$  ....GIVEN 

    And they are corresponding angles and equal 

    $$\Rightarrow $$ BC is parallel to DE

    $$\angle E = \angle C   $$....corresponding angles of  parallel lines BC and DE.

    $$\angle A = \angle A $$  ..... common angle 

    So, by $$ AAA$$  similarity 

    $$\Delta ABC  $$  $$\sim $$  $$\Delta ADE$$

    the lengths of the corresponding sides of two similar triangles are proportional.

    $$\Rightarrow \dfrac{AB}{AD} = \dfrac{AC}{AE} =\dfrac{BC}{DE}$$

    $$\Rightarrow \dfrac{10}{11} =\dfrac{2}{x}$$

    On solving above we get 

    $$x=2.2$$

  • Question 9
    1 / -0
    The area of two similar triangles are $$200$$ and $$128$$, then the ratio of their corresponding altitude is __________
    Solution
    Since we know that ratio of areas of two similar triangles is equal to the square of the ratio of their altitude
    therefore
    Ratio of their altitude $$=\sqrt {\dfrac{{200}}{{128}}} $$
                                  
                                       $$ = \sqrt {\dfrac{{100}}{{64}}} $$

                                       $$ = \dfrac{{10}}{8}$$

                                       $$ = \dfrac{5}{4}$$
                                       $$ = 5:4$$

  • Question 10
    1 / -0
    If $$\triangle ABC\sim \triangle DEF$$ and $$AB:DE=3:4$$, then the ratio of area of triangles taken in order is 
    Solution
     In similar triangles,
    Ratio of areas of triangle = Square of ratio of corresponding sides
    Ratio of areas of triangle=$${\dfrac {3^2}{4^2}}$$

                                             =$$\dfrac{9}{16}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now