Self Studies

Triangles Test - 28

Result Self Studies

Triangles Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In triangle ABC, $$BC^2$$ + $$AB^2$$ = $$AC^2$$, then __________ is a right angle
    Solution

    In $$\triangle ABC,$$

    $$\Rightarrow$$  $$(AC)^2=(BC)^2+(AB)^2$$                   [ Given ]  --- ( 1 )

    Pythagoras theorem,

    $$\Rightarrow$$  $$(Hypotenuse)^2=(one\,side)^2+(other\,side)^2$$   ---- ( 2 )

    Comparing ( 1 ) and ( 2 ) we get, $$AC$$ is a hypotenuse of a triangle.

    $$\Rightarrow$$   Hypotenuse is the longest side of a right-angled triangle, opposite the right angle.

    $$\Rightarrow$$  Opposite angle of $$AC$$ is $$\angle B.$$

    $$\therefore$$  $$\angle B$$ is a right angle of $$\triangle ABC.$$

  • Question 2
    1 / -0
    Two angles of triangle ABC are $$\displaystyle 85^{\circ}$$ and $$\displaystyle 65^{\circ}$$  while the  two angles of another triangle DEF are $$\displaystyle 30^{\circ}$$ and $$\displaystyle 65^{\circ}$$.Which of the statements is correct?
    Solution
    For the first triangle, with two angles as 85$$^o$$ and 65$$^o$$ , let the third angle be $$x^o$$ 
    Sum of angles = 180$$^o$$ 
    $$85^o + 65 ^o + x^o  = 180^o$$
    $$x = 30^o$$
    For the second triangle, with two angles as 30$$^o$$and 65$$^o$$, let the third angle be $$y$$
    Sum of angles = $$180^o$$
    $$85^o + 30^o + y^o = 180^o$$
    $$y = 65^o$$
    Since, the angles of the two triangles are equal. Hence, the two triangles are similar. (AAA rule)
  • Question 3
    1 / -0
    The given figure shows a parallelogram ABCD. E is a point in AD and CE produced meets BA produced at point F. If $$AE=4 cm, AF= 8$$ cm and AB $$=12$$ cm. find the perimeter of the parallelogram ABCD.

    Solution
    In $$\triangle AFE$$ and $$\triangle BFC$$,
    $$\angle AFE = \angle BFC$$ (Common angle)
    $$\angle AEF = \angle BCF$$ (Corresponding angles of parallel lines)
    $$\angle FAE = \angle CBF$$ (Corresponding angles of parallel lines)
    Thus, $$\triangle AFE \sim \triangle CFB$$ ($$AAA$$ rule)
    Hence, $$\dfrac{AF}{BF} = \dfrac{AE}{BC}$$
    $$\dfrac{AF}{AF + AB} = \dfrac{AE}{BC}$$
    $$\dfrac{8}{8 + 12} = \dfrac{4}{BC}$$
    $$BC = \dfrac{4 \times 20}{8}$$
    $$BC = 10$$ cm
    Perimeter of parallelogram = $$AB + BC + BC+ AD$$ 
    Perimeter of parallelogram = $$2 (AB + BC)$$ 
    Perimeter of parallelogram = $$2  (12 + 10)$$  (Opposite sides are equal) 
    Perimeter of parallelogram = $$44$$ cm
  • Question 4
    1 / -0
    $$\angle BAC$$ of triangle $$ABC$$ is obtuse and $$AB=AC$$. $$P$$ is a point in $$BC$$ such that $$PC= 12$$ cm. $$ PQ $$ and $$PR$$ are perpendiculars to sides $$AB$$ and $$AC$$ respectively. If $$PQ= 15$$ cm and $$=9$$ cm; find the length of $$PB$$.

    Solution
    Given: $$AB = AC$$, $$PQ \perp AB$$ and $$PR \perp AC$$
    Since, $$AB = AC$$
    $$\angle ABC = \angle ACB$$...(I) (Isosceles triangle property)

    Now, In $$\triangle PBQ$$ and $$\triangle PRC$$
    $$\angle PBQ = \angle PCR$$ (From I)
    $$\angle PQB = \angle PRC$$ (Each $$90^{\circ}$$)
    $$\angle QPB = \angle RPC$$ (Third angle)

    Thus, $$\triangle QPB \sim \triangle RPC$$ (by AAA similarity)

    If two triangles are similar, then their corresponding sides are proportional.
     $$\dfrac{PQ}{PR} = \dfrac{PB}{PC}$$
    $$\dfrac{15}{9} = \dfrac{PB}{12}$$
    $$PB = \dfrac{15 \times 12}{9}$$
    $$PB = 20\ cm$$ 

  • Question 5
    1 / -0
    In the following figure, M is midpoint of BC of a parallelogram ABCD.
    DM intersects the diagonal AC at P and AB produced at E. Then

    Solution
    Given: ABCD is a parallelogram. M is mid point of BC.

    In $$\triangle DMC$$ and $$\triangle MBE$$
    $$\angle DMC = \angle BME$$ (Vertically opposite angles)
    $$\angle DCM = \angle MBE$$ (Alternate angles)
    $$MC = MB$$ (M is mid point of BC)
    Thus, $$\triangle DMC \cong \triangle EMB$$ (ASA rule)
    Thus, $$DC = BE$$ (By CPCT)

    Now, In $$\triangle DPC$$ and $$\triangle APE$$
    $$\angle DPC = \angle APE$$ (Vertically Opposite angles)
    $$\angle CDP = \angle AEP$$ (Alternate angles)
    $$\angle PCD = \angle PAE$$ (Alternate angles)
    Thus, $$\triangle DPC \sim \triangle EPA$$ (AAA rule)
    Hence, $$\frac{PE}{PD} = \frac{AE}{CD}$$
    $$\frac{PE}{PD} = \frac{AB + BE}{CD}$$ (since AB = BE = CD)
    $$\frac{PE}{PD} = 2$$
    $$PE = 2 PD$$
  • Question 6
    1 / -0
    In the figure below AB, CD and EF are parallel lines. Given AB$$=$$ 7.5 cm, DC$$=$$ y cm. EF $$=$$ 4.5 cm, BC$$=$$ x cm and CE $$=$$ 3 cm. Calculate the values of x and y.

    Solution
    In $$\triangle BCD$$ and $$\triangle BEF$$,
    $$\angle DBC = \angle FBE$$ (Common angle)
    $$\angle BCD = \angle BEF$$ (Corresponding angles of parallel lines CD and EF)
    $$\angle BDC = \angle BFE$$ (Corresponding angles of parallel lines CD and EF)
    Thus, $$\triangle BCD \sim \triangle BEF$$ (AAA rule)
    Hence, $$\frac{BC}{BE} = \frac{BD}{BF} = \frac{CD}{EF}$$ (Corresponding sides)
    $$\frac{x}{x + 3} = \frac{BD}{BF} = \frac{y}{4.5}$$ ..(I)

    Similarly, $$\triangle FCD \sim \triangle FAB$$
    Thus, $$\frac{FC}{FA} = \frac{CD}{AB} = \frac{FD}{FB}$$
    $$\frac{y}{7.5} = \frac{DF}{BF}$$ (II)
    From I and II,
    $$BD = \frac{y}{4.5} BF$$ and $$DF = \frac{y}{7.5} BF$$
    $$BD + DF = BF$$
    $$\frac{y}{4.5}BF + \frac{y}{7.5} BF = BF$$
    $$7.5 y + 4.5 y = 7.5 \times 4.5$$
    $$y = \frac{45}{16}$$

    Also, $$\frac{x}{x + 3} = \frac{y}{4.5}$$
    $$\frac{x}{x + 3} = \frac{45}{16 \times 4.5}$$
    $$\frac{x}{x + 3} = \frac{45}{72}$$
    $$72x = 45x + 135$$
    $$27x = 135$$
    $$x = 5 cm $$
  • Question 7
    1 / -0
    From the given figure, if ABP=ACB, find AC

    Solution
    In $$\triangle ABC$$,
    Given, $$\angle ABP = \angle ACB$$, $$AB= 9$$, $$BC = 15$$, $$BP = 12$$

    In $$\triangle ABP$$ and $$\triangle ABC$$,
    $$\angle ABP = \angle ACB$$ (Given)
    $$\angle BAP = \angle BAC$$ (Common angle)
    $$\angle APB = \angle ABC$$ (third angle)
    Thus, $$\triangle ABP \sim \triangle ACB$$ (AAA rule)
    Thus, $$\frac{AB}{AC} = \frac{BP}{BC}$$
    $$\frac{9}{AC} = \frac{12}{15}$$
    $$AC = \frac{9 \times 15}{12}$$
    $$AC = 11.25$$ cm
  • Question 8
    1 / -0
    A line segment $$DE$$ is drawn parallel to base $$BC$$ of $$\displaystyle \Delta ABC$$ which cuts $$AB$$ at point
    $$D$$ and $$AC$$ at point $$E$$. If $$AB=5 BD$$ and $$EC = 3.2$$ cm. find the length of $$AE$$.

  • Question 9
    1 / -0
    In the figure given below, $$AB /\parallel  EF \parallel CD$$. If $$AB = 22.5 cm, EP = 7.5 cm, PC = 15 cm$$ and $$DC = 27$$ cm. Find $$AC$$

    Solution
    Given: $$AB \parallel EF \parallel CD$$
    $$AB = 22.5, EP = 7.5, PC = 15, DC = 27$$

    In $$\triangle DCP$$ and $$\triangle EPF$$,
    $$\angle DCP = \angle PEF$$ (Alternate angles)
    $$\angle CDP = \angle PFE$$ (Alternate angles)
    $$\angle DPC = \angle EPF$$ (Vertically opposite angles)
    Thus, $$\triangle DCP \sim \triangle FEP$$ (AAA rule)
    Now, $$\dfrac{DC}{EF} = \dfrac{PC}{EP}$$
    $$\dfrac{27}{EF} = \dfrac{15}{7.5}$$
    $$EF = 13.5$$ cm

    Now, In $$\triangle ABC$$ and $$\triangle ECF$$,
    $$\angle CEF = \angle CAB$$ (Corresponding angles)
    $$\angle CFE = \angle CBA$$ (Corresponding angles)
    $$\angle ECF = \angle ACB$$ (Common angle)
    Thus, $$\triangle ABC \sim \triangle EFC$$ (AAA rule)

    Hence, $$\dfrac{AB}{EF} = \dfrac{AC}{EC}$$
    $$\dfrac{22.5}{13.5} = \dfrac{AC}{7.5 + 15}$$
    $$AC = \dfrac{22.5\times 22.5}{13.5}$$
    $$AC = 37.5$$ cm
  • Question 10
    1 / -0
    In the following figure, $$XY$$ is parallel to $$BC$$, $$AX= 9 $$ cm, $$XB= 4.5$$ cm and $$BC =18$$ cm. Find $$\displaystyle \dfrac{YC}{AC}$$

    Solution

    In $$\triangle AXY$$ and $$\triangle ABC$$
    $$\angle XAY = \angle BAC$$ (Common angle)
    $$\angle AXY = \angle ABC$$ (Corresponding angles for parallel lines $$XY$$ and $$BC$$)
    $$\angle AYX = \angle ACB$$ (Corresponding angles for parallel lines $$XY$$ and $$BC$$)
    Thus, $$\triangle AXY \sim \triangle ABC$$ (AAA rule)

    Therefore, $$ \dfrac { BX }{ AB } =\dfrac { YC }{ AC } $$

    $$ \dfrac { YC }{ AC } =\dfrac { 4.5 }{ 4.5+9 } \\ \dfrac { YC }{ AC } =\dfrac { 4.5 }{ 13.5 } =\dfrac { 1 }{ 3 } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now