Self Studies

Triangles Test - 29

Result Self Studies

Triangles Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In triangle ABC, AB = AC = 8 cm, BC = 4 cm and P is a point on AC, such that AP = 6 cm, then find the length of BP.
    Solution
    Given that, in $$\triangle ABC$$, $$AB = AC = 8\ cm$$, $$BC = 4\ cm$$ and $$AP = 6\ cm$$

    In $$\triangle\,ABC$$,  
    $$\displaystyle\,\frac{AB}{BC}\,=\,\frac{8}{4}\,=\,2\quad ....(i)$$

    $$AC=8\ cm\text{ and }AP= 6\ cm$$
    $$\therefore \ CP=8-6=2\ cm$$

    In $$\Delta\,BPC$$, 
    $$\displaystyle\,\frac{BC}{CP}\,=\,\frac{4}{2}\,=\,2\quad ....(ii)$$ 

    From $$(i)$$ and $$(ii)$$, we get:
    $$\displaystyle\,\frac{AB}{BC}\,= \displaystyle\,\frac{BC}{CP}=2$$

    Also, angle $$C$$ is common in both triangles
    $$\therefore \ \angle\,ACB\,=\,\angle\,PCB$$

    Therefore, by SAS similarity criterion, $$\Delta\,ABC \sim \Delta\,BPC$$

    Hence, $$\dfrac{AB}{BP} = \dfrac{AC}{BC}$$

    $$\dfrac{8}{BP} = \dfrac{8}{4}$$

    $$\therefore \ BP = 4\ cm$$

  • Question 2
    1 / -0
    In the figure given below, $$CD \parallel EF \parallel AB$$. If $$AB= 22.5$$ cm, $$EP= 7.5$$ cm, $$PC= 15$$ cm and $$DC=27$$ cm. Calculate $$EF$$.

    Solution
    Given: $$CD \parallel EF \parallel AB$$

    In $$\triangle DCP$$ and $$\triangle PEF$$,
    $$\angle DPC = \angle EPF$$ (Vertically opposite angles)
    $$\angle DCP = \angle PEF$$ (Alternate angles for parallel lines CD and EF)
    $$\angle CDP = \angle PFE$$ (Alternate angles for parallel lines CD and EF)

    Thus, $$\triangle DCP \sim \triangle FEP$$ (AAA rule)

    Hence, $$\dfrac{DC}{EF} = \dfrac{PC}{EP}$$ (Corresponding sides)

    $$\dfrac{27}{EF} = \dfrac{15}{7.5}$$

    $$EF = 13.5$$ cm
  • Question 3
    1 / -0
    In the following figure, $$XY$$ is parallel to $$BC$$, $$AX= 9 $$ cm, $$XB= 4.5$$ cm and $$BC =18$$ cm. Find $$\displaystyle \dfrac{AY}{YC}$$

    Solution
    In $$\triangle AXY$$ and $$\triangle ABC$$
    $$\angle XAY = \angle BAC$$ (Common angle)
    $$\angle AXY = \angle ABC$$ (Corresponding angles for parallel lines $$XY$$ and $$BC$$)
    $$\angle AYX = \angle ACB$$ (Corresponding angles for parallel lines $$XY$$ and $$BC$$)
    Thus, $$\triangle AXY \sim \triangle ABC$$ (AAA rule)
    Hence, $$\dfrac{AB}{AX} = \dfrac{AC}{AY}$$ (Corresponding sides)
    On subtracting $$1$$ from both the sides, we have 
     $$\dfrac{AB}{AX} - 1 = \dfrac{AC}{AY} - 1$$

    $$\Rightarrow \dfrac{AB - AX}{AX} = \dfrac{AC - AY}{AY}$$

    $$\Rightarrow \dfrac{XB}{AX} = \dfrac{YC}{AY}$$

    $$\Rightarrow \dfrac{4.5}{9} = \dfrac{YC}{AY}$$

    $$\Rightarrow \dfrac{AY}{YC} = 2$$
  • Question 4
    1 / -0
    In the following figure, XY is parallel to $$BC,\  AX= 9 cm$$, $$XB= 4.5$$ cm and $$BC =18$$ cm. Find the value of $$XY$$.

    Solution
    In $$\triangle AXY$$ and $$\triangle ABC$$
    $$\angle XAY = \angle BAC$$ (Common angle)
    $$\angle AXY = \angle ABC$$ (Corresponding angles for parallel lines XY and BC)
    $$\angle AYX = \angle ACB$$ (Corresponding angles for parallel lines XY and BC)
    Thus, $$\triangle AXY \sim \triangle ABC$$ (AAA rule)
    Hence, $$\dfrac{AB}{AX} = \dfrac{AC}{AY} = \dfrac{BC}{XY}$$ (Corresponding sides)
    $$\dfrac{9 + 4.5}{9} = \dfrac{18}{XY}$$
    $$XY = \dfrac{18 \times 9}{13.5}$$
    So, $$XY = 12 cm $$
  • Question 5
    1 / -0
    For two triangles, if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar. This is called ___ similarity.   
    Solution
    For two triangles, if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar. This is called SAS similarity.
    So, option C is correct.
  • Question 6
    1 / -0
    In the figure, XY $$\parallel$$ AC and XY divides the triangular region ABC into two equal areas.
    Determine AX : XB.

    Solution
    Ar. AXYC $$=$$ Ar. BXY
    Ar. AXYC +Ar. BXY $$= 2$$ Ar. BXY
    Ar.ABC $$= 2$$ Ar. BXY
    Hence, $$\dfrac{Ar. ABC}{Ar. BXY} = 2$$ ...(I)
    In $$\triangle$$s ABC and BXY,
    $$\angle XBY = \angle ABC $$ (Common angle)
    $$\angle BXY = \angle BAC$$ (Corresponding angles of parallel lines XY and AC)
    $$\angle BYX = \angle BCA$$ (Corresponding angles of parallel lines XY and AC)
    $$\triangle ABC \sim \triangle XBY$$ (AAA postulate)
    Now, $$\dfrac{Ar. ABC}{Ar. BXY} = \dfrac{AB^2}{BX^2}$$ (Similar triangle Property)
    $$2 = \dfrac{AB^2}{BX^2}$$
    $$\dfrac{AB}{BX} = \sqrt{2}$$
    $$AB = \sqrt{2} BX$$
    $$AX + XB = \sqrt{2} XB$$
    $$AX = (\sqrt{2} - 1) XB$$
    $$AX : XB = (\sqrt{2} - 1): 1$$
  • Question 7
    1 / -0
    In the trapezium ABCD, side AB $$\parallel$$ side DC. Diagonals AC and DB intersect each other at O.
     If AB = 15, DC = 10. Find $$\displaystyle \frac{OC}{OA}$$.

    Solution
    In $$\triangle OAB$$ and $$\triangle OCD$$,

    $$\angle AOB = \angle COD$$ (Vertically opposite angles)

    $$\angle OAB = \angle OCD$$ (Alternate angles)

    Thus, $$\triangle OAB \sim \triangle OCD$$ (AA rule)

    Hence, 
    $$\dfrac{OC}{OA} = \dfrac{CD}{AB}$$ (C. S. S.T)

    $$\dfrac{OC}{OA} = \dfrac{10}{15}$$

    $$\dfrac{OC}{OA} = \dfrac{2}{3}$$
  • Question 8
    1 / -0
    In parallelogram $$ABCD$$, $$E$$ is mid-point of side $$AB$$ and $$CE$$ meets the diagonal $$BD$$ at point $$O$$, then $$OE : OC $$ is,
    Solution
    Given, Parallelogram $$ABCD$$ with $$E$$ as a mid point of $$AB,CE$$ meets diagonal $$BD$$ at $$O$$.

    Now, In $$\triangle EOB$$ and $$\triangle DOC$$

    $$\angle DOC=\angle EOB\qquad $$                             (Vertically opposite angles are equal.)

    $$\angle EBO=\angle ODC$$                                      (Alternate angles, $$\because AB\parallel CD$$ and $$BD$$ intersect it)

    $$\angle OCD=\angle OEB$$                                      (Alternate angles, $$\because AB\parallel CD$$ and $$EC$$ intersect it)

    Using $$A{-}A{-}A$$ property, $$\triangle EOB\sim \triangle DOC$$

    Using similarity property,

    $$\cfrac { OE }{ OC } =\cfrac { EB }{ DC } $$

    $$\cfrac { OE }{ OC } =\cfrac { EB }{ AB } $$    
                                                          (As $$AB=DC$$,opposite sides of parallelogram)
    $$AB=2EB $$       
                                                          (As $$E$$ is mid point of AB)
    $$\therefore \dfrac { OE }{ OC } =\dfrac { 1 }{ 2 } $$

    So, $$OE : OC= 1 : 2 $$                                      

  • Question 9
    1 / -0
    In the figure, $$\triangle ABC$$ is right angled at $$B$$. $$D$$ is any point on $$AB$$. $$\,seg\,DE\,\bot\, side \,AC$$. If $$AD\,=\,6\,cm,\,AB\,=\,12\,cm\,\,AC\,=\,18\,cm$$. Find $$AE$$.

    Solution
    In $$\triangle ABC$$ and $$\triangle ADE$$,
    $$\angle BAC = \angle DAE$$ (Common angle)
    $$\angle ABC = \angle AED$$ (Each $$90^{\circ}$$)
    $$\angle ACB = \angle ADE$$ (Third angle)
    Thus, $$\triangle ADE \sim \triangle ABC$$ (AAA rule)

    Hence, $$\dfrac{AD}{AC} = \dfrac{AE}{AB}$$
    $$\Rightarrow \dfrac{6}{18} = \dfrac{AE}{12}$$
    $$\Rightarrow AE = \dfrac{6 \times 12}{18}$$
    $$\Rightarrow AE = 4$$ 

    Hence, $$AE=4\ cm$$
  • Question 10
    1 / -0
    Find BC, if AB = 7.2 cm.

    Solution
    In $$\triangle ACE$$ and $$\triangle BCD$$

    $$\angle ACE = \angle BCD $$ (Common angle)

    $$\angle CBD =\angle CAE$$ (Corresponding angles, since $$BD || AE$$)

    $$\angle CDB =\angle CEA$$ (Corresponding angles, since $$BD || AE$$)

    Hence, $$\triangle ACE \sim \triangle BCD$$ BY AAA similarity criterion.

    Thus, $$\dfrac{BC}{AC} = \dfrac{CD}{CE}$$

    $$\Rightarrow \dfrac{BC}{BC + AB} = \dfrac{CD}{CD+ DE} $$ 

    Given that, $$CD = DE$$

    Hence, $$\dfrac{BC}{BC + AB} =  \dfrac{1}{2} $$

    $$\Rightarrow 2 BC = AB + BC $$

    $$\therefore \ BC = AB $$

    $$\Rightarrow BC = 7.2 \ cm $$.

    Hence, $$BC=7.2\ cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now