It is given that $$PQ$$ divides $$\triangle ABC$$ into two parts of equal area. So,
$$\begin{aligned}{}ar\left( {APQ} \right) &= ar\left( {PBCQ} \right)\\ar\left( {APQ} \right) + ar\left( {APQ} \right) &= ar\left( {PBCQ} \right) + ar\left( {APQ} \right)\\2ar\left( {APQ} \right) &= ar\left( {ABC} \right)\\\frac{{ar\left( {APQ} \right)}}{{ar\left( {ABC} \right)}}& = \frac{1}{2}\quad\quad\quad\quad\dots(i)\end{aligned}$$
Now, in $$\triangle APQ$$ and $$\triangle ABC$$, we have
$$\angle PAQ=\angle BAC$$ [Common]
$$\angle APQ=\angle ABC$$ [Corresponding angles]
So, by $$AAA$$ criteria of similarity,
$$\triangle APQ \sim \triangle ABC$$
We know that the areas of similar triangles are proportional to the squares of their corresponding sides.
$$\therefore$$ $$\cfrac{ar(\triangle APQ)}{ar(\triangle ABC)}=\cfrac{{AP}^{2}}{{AB}^{2}}$$
$$\Rightarrow $$ $$\cfrac{AP^2}{AB^2}=\cfrac{1}{2}$$ [By using $$(i)$$]
$$\Rightarrow AB=\sqrt 2\cdot AP$$
$$\Rightarrow$$ $$AB=\sqrt 2(AB-PB)$$
$$\Rightarrow$$ $$\sqrt 2 PB=(\sqrt{2} -1)AB$$
$$\Rightarrow$$ $$\cfrac{PB}{AB}=\cfrac{(\sqrt 2-1)}{\sqrt 2}$$
$$\therefore$$ $$PB:AB=(\sqrt 2-1):\sqrt 2$$