Self Studies

Triangles Test - 31

Result Self Studies

Triangles Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio of the areas of two similar triangles is equal to: 
    Solution
    $${\textbf{Step -1: Concept of similar triangle.}}$$
                      $${\text{The ratio of the areas of two similar triangles is equal to the}}$$ 
                      $${\text{squares of the ratio of their corresponding sides.}}$$
                      $${\text{As we know if 3 sides of one triangle are equal to the 3 sides of another triangle,}}$$ 
                      $${\text{then the two triangles are congruent.}}$$     
    $${\textbf{Thus, option C is correct.}}$$              
  • Question 2
    1 / -0
    The areas of two similar triangles are $$49 \ {cm}^{2}$$ and $$64 \ {cm}^{2}$$ respectively. The ratio of their corresponding sides is:
    Solution
    Areas of two similar triangles are $$49 $$ cm $$^2$$ and $$64$$ cm $$^2.$$
    For similar triangles the ratio of areas is equal to the ratio of square of corresponding sides.
    Hence, $$\dfrac{A_1}{A_2} = \dfrac{(s_1)^2}{(s_2)^2}$$
    $$\Longrightarrow \dfrac{49}{64} = \dfrac{(s_1)^2}{(s_2)^2}$$
    $$\Longrightarrow\dfrac{s_1}{s_2} = \dfrac{7}{8}$$
  • Question 3
    1 / -0
    $$\Delta ABC \sim  \Delta PQR$$ and $$\displaystyle\frac{A( \Delta ABC)}{A( \Delta PQR)}=\dfrac{16}{9}$$. If $$PQ=18$$ cm and $$BC=12$$ cm, then $$AB$$ and $$QR$$ are respectively:
    Solution

    $$\displaystyle\frac{16}{9}=\left[\frac{AB}{PQ}\right]^2=\left[\frac{BC}{QR}\right]^2$$

    $$\displaystyle\Rightarrow \frac{16}{9}=\left[\frac{AB}{18}\right]^2$$ and $$\displaystyle\frac{16}{9}=\left[\frac{12}{QR}\right]^2$$

    $$\displaystyle \Rightarrow \frac{4}{3}=\frac{AB}{18}$$ and $$\displaystyle \frac{4}{3}=\frac{12}{QR}$$

    $$\Rightarrow AB=24$$ cm, $$QR=9$$ cm.

  • Question 4
    1 / -0
    In figure, two lines segments $$AC$$ and $$BD$$ intersect each other at the point $$P$$ such that $$PA=6cm$$, $$PB=3cm$$, $$PC=2.5cm$$, $$PD=5cm$$, $$\angle APB={50}^{o}$$ and $$\angle CDP={30}^{o}$$. Then $$\angle PBA$$ is equal to:

    Solution

    Given:  $$PA = 6$$ cm, $$PB = 3$$ cm, $$PC = 2.5$$ cm, $$PD=5$$ cm 
    $$\dfrac{PA}{PD} = \dfrac{6}{5}$$

    $$\dfrac{PB}{PC}$$ = $$\dfrac{3}{2.5}$$ = $$\dfrac{6}{5}$$

    Thus, $$\dfrac{PA}{PD} = \dfrac{PB}{PC}$$

    In $$\triangle APB$$ and $$\triangle DPC$$,
    $$\dfrac{PA}{PD} = \dfrac{PB}{PC}$$      ...Given

    $$\angle APB = \angle DPC$$        ...Vertically opposite angles

    Hence, $$\triangle APB \sim \triangle DPC$$           ....S.A.S test of similarity

    Hence, $$\angle A = \angle D = 30^{o}$$

    Now, In $$\triangle APB$$,
    Sum of angles $$= 180^o$$
    $$\angle A + \angle B + \angle APB = 180$$
    $$30 + 50 + \angle B = 180^{o}$$
    $$\angle B = 100^{\circ}$$

  • Question 5
    1 / -0
    In the adjoining figure, $$XY$$ is parallel to $$AC$$. If $$XY$$ divides the triangle into equal parts, then the value $$\cfrac{AX}{AB}=$$

    Solution
    We have,   Area of $$\triangle BXY$$ = Area of AXYC
    Now adding Area of $$\triangle BXY$$ on both sides, we get,
         $$2\times$$ Area of $$\triangle BXY$$=Area of $$\triangle ABC$$
    $$\Rightarrow \frac {Area\quad of\quad \triangle ABC}{ Area\quad of\quad \triangle BXY }=2$$    ------(i)

    In $$\triangle ABC$$ and $$\triangle XBY$$
          $$\angle ABC=\angle XBY$$
          $$\angle BAC=\angle BXY$$  ---------(corresponding angles)
    By AA Similarity, $$\triangle ABC \sim \triangle XBY$$
    From (i), we have,
        $$\dfrac { { AB }^{ 2 } }{ { BX }^{ 2 } }=2$$

    $$\Rightarrow\dfrac { { AB } }{ { BX } }=\sqrt { 2 } $$

    $$\Rightarrow \dfrac { { BX } }{ { AB } }=\frac { 1 }{ \sqrt { 2 }  } $$

    $$\Rightarrow 1-\dfrac { { BX } }{ { AB } }=1-\dfrac { 1 }{ \sqrt { 2 }  }$$

    $$\Rightarrow \dfrac { { AB-BX } }{ { AB } }=\dfrac {\sqrt { 2 }- 1 }{ \sqrt { 2 }  }$$
    $$\Rightarrow \dfrac { { AX } }{ { AB } }=\dfrac {\sqrt { 2 }- 1 }{ \sqrt { 2 }  }$$

  • Question 6
    1 / -0
    State True or False
    The two triangles are similar .$$EB||DC$$

    Solution
    In $$\triangle ABE$$ and $$\triangle ACD$$

    $$\Rightarrow$$  $$\angle EAB=\angle DAC$$                [ Common angle ]

    $$\Rightarrow$$  $$\angle ABE=\angle ACD$$                [ Corresponding angles ]

    $$\Rightarrow$$  $$\angle BEA=\angle CDA$$               [ Corresponding angles ]

    $$\therefore$$  $$\triangle ABE\sim\triangle ACD$$           [ By $$AAA$$ similarity rule ]

    $$\therefore$$  We have proved that, the two triangles are similar.
  • Question 7
    1 / -0
    In the figure, $$PQRS$$ is a parallelogram with $$PQ=15cm$$ and $$RQ=10cm$$. $$L$$ is a point on $$RP$$ such that $$RL:LP=2:3$$. $$QL$$ produced meets $$RS$$ at $$M$$ and $$PS$$ produced at $$N$$. Find the lengths of $$PN$$ and $$RM$$.

    Solution
    Given: $$PQRS$$ is a parallelogram. $$PQ = 15$$ and $$RQ = 10$$, $$\frac{RL}{LP} = \frac{2}{3}$$
    In $$\triangle RLQ$$ and $$\triangle NLP$$
    $$\angle RLQ = \angle NLP$$ (vertically opposite angles)
    $$\angle LRQ = \angle LPN$$ (Alternate angles)
    $$\angle LQR = \angle LNP$$ (Alternate angles)
    Thus, $$\triangle RLQ \sim \triangle PLN$$ (AAA rule)
    Hence, $$\dfrac{RL}{PL} = \dfrac{RQ}{PN}$$ (Corresponding sides of similar triangles)
    $$PN = \dfrac{3 \times 10}{2}$$
    $$PN = 15 cm$$
    Similarly, $$\triangle RLM \sim \triangle PLQ$$
    $$\dfrac{RL}{LP} = \dfrac{RM}{PQ}$$ (Corresponding sides of similar triangles)
    $$RM = \dfrac{15 \times 2}{3}$$
    $$RM = 10$$ cm.
  • Question 8
    1 / -0
    Find the length $$JN$$ in the given figure.

    Solution
    Given: $$KN \parallel ML$$

    Use the basic proportionality theorem

    $$\cfrac{JN}{NM}=\cfrac{JK}{KL}$$

    $$\cfrac{JN}{8}=\cfrac{18}{12}$$ Find the cross products

    $$12\times JN=8\times 18$$

    $$JN=\cfrac{144}{12}$$

    $$JN=12$$
  • Question 9
    1 / -0
    If $$\widetilde{BAD} \cong \widetilde{ADC}$$, then

    Solution
    Since the given two triangles are congruent , then corresponding sides and the angles will be equal.
    This way:
    $$BA=AD$$ (i)
    $$AD=DC$$ (ii)
    $$DB=CA$$ (iii)
    Using (i) and (iii)
    $$AB=CD$$



  • Question 10
    1 / -0
    $$P$$ and $$Q$$ are points on the sides $$AB$$ and $$AC$$ respectively of $$\triangle ABC$$ such that $$PQ\parallel BC$$ and divides the triangle into two parts of equal area. Find $$PB:AB$$.

    Solution

    It is given that $$PQ$$ divides $$\triangle ABC$$ into two parts of equal area. So,

    $$\begin{aligned}{}ar\left( {APQ} \right) &= ar\left( {PBCQ} \right)\\ar\left( {APQ} \right) + ar\left( {APQ} \right) &= ar\left( {PBCQ} \right) + ar\left( {APQ} \right)\\2ar\left( {APQ} \right) &= ar\left( {ABC} \right)\\\frac{{ar\left( {APQ} \right)}}{{ar\left( {ABC} \right)}}& = \frac{1}{2}\quad\quad\quad\quad\dots(i)\end{aligned}$$


    Now, in $$\triangle APQ$$ and $$\triangle ABC$$, we have
    $$\angle PAQ=\angle BAC$$               [Common]
    $$\angle APQ=\angle ABC$$               [Corresponding angles]


    So, by $$AAA$$ criteria of similarity,

    $$\triangle APQ \sim \triangle ABC$$


    We know that the areas of similar triangles are proportional to the squares of their corresponding sides.
    $$\therefore$$ $$\cfrac{ar(\triangle APQ)}{ar(\triangle ABC)}=\cfrac{{AP}^{2}}{{AB}^{2}}$$

    $$\Rightarrow $$ $$\cfrac{AP^2}{AB^2}=\cfrac{1}{2}$$                  [By using $$(i)$$]

    $$\Rightarrow AB=\sqrt 2\cdot AP$$

    $$\Rightarrow$$ $$AB=\sqrt 2(AB-PB)$$

    $$\Rightarrow$$ $$\sqrt 2 PB=(\sqrt{2} -1)AB$$

    $$\Rightarrow$$ $$\cfrac{PB}{AB}=\cfrac{(\sqrt 2-1)}{\sqrt 2}$$

    $$\therefore$$ $$PB:AB=(\sqrt 2-1):\sqrt 2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now