Self Studies

Triangles Test - 33

Result Self Studies

Triangles Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, $$QA$$ and $$PB$$ are perpendiculars to $$AB.$$ If $$AO=10$$ cm, $$BO=6$$ cm and $$PB=9$$ cm, find $$AQ.$$

    Solution
    In $$\triangle $$ $$AOQ$$ and $$\triangle BOP$$, we have

    $$\angle OAQ=\angle OBP$$          (Each equal to $$90^{\circ}$$)

    $$\angle AOQ=\angle POB$$          (Vertically opp. $$\angle $$s)

    $$\therefore $$ By AA-similarity,

    $$\triangle AOQ\sim \triangle BOP$$

    $$\Rightarrow $$ $$\displaystyle \frac{AO}{BO}=\frac{OQ}{OP}=\frac{AQ}{BP}$$

     $$\displaystyle \frac{AO}{BO}=\frac{AQ}{9}= \frac{10}{6}\\\Rightarrow AQ=\dfrac{10\times 9}{6}\\=15\ cm$$ 
  • Question 2
    1 / -0
    The areas of two similar triangles are $$121$$ cm$$^{2}$$ and $$64$$ cm$$^{2}$$, respectively. If the median of the first triangle is $$12.1$$ cm, then the corresponding median of the other is:
    Solution
    The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding medians. Therefore,
    $$\displaystyle \frac{121}{64}=\frac{\left ( 12.1 \right )^{2}}{x^{2}},$$ where $$x$$ is the median of the other $$\triangle .$$
    $$\Rightarrow $$ $$\displaystyle x^{2}=\frac{\left ( 12.1 \right )^{2}\times 64}{121}\Rightarrow x=\sqrt{\frac{121}{100}\times 64}$$
       $$\displaystyle =\frac{11}{10}\times 8=8.8$$ cm.
  • Question 3
    1 / -0
    Triangles $$ABC$$ and $$DEF$$ are similar. If the length of the perpendicular $$AP$$ from $$A$$ on the opposite side $$BC$$ is $$2$$ cm and the length of the perpendicular $$DQ$$ from $$D$$ on the opposite side $$EF$$ is $$1$$ cm, then what is the area of $$\triangle ABC\: ?$$

    Solution
    Areas of similar triangles are in the ratio of square of altitues.
    $$\dfrac{Ar(\triangle ABC)}{Ar(\triangle DEF)} = \dfrac{AP^2}{DQ^2}$$
    $$\Rightarrow Ar(\triangle ABC) = 4 Ar(\triangle DEF)$$
  • Question 4
    1 / -0
    If $$\triangle ABC$$ is similar to $$\triangle DEF$$ such that $$BC=3$$ cm, $$EF=4$$ cm and area of $$\triangle ABC=54\: \text{cm}^{2}.$$ Find the area of $$\triangle DEF.$$ (in cm$$^2$$)
    Solution
    Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,

    Therefore, $$\displaystyle \frac{ar\left ( \triangle ABC \right )}{ar\left ( \triangle DEF \right )}=\dfrac{BC^{2}}{EF^{2}}$$ 

    $$\Rightarrow $$ $$\displaystyle \dfrac{54}{ar\left ( \triangle DEF \right )}=\dfrac{3^{2}}{4^{2}}$$ 

    Thus $$\displaystyle ar\left ( \triangle DEF \right )=\dfrac{54\times 16}{9}=96\: \text{cm}^{2}$$
  • Question 5
    1 / -0
    $$D$$ and $$E$$ are respectively the points on the sides $$AB$$ and $$AC$$ of a $$\triangle ABC$$ such that $$AB = 12 \text{ cm},$$ $$AD = 8 \text{ cm},$$ $$AE = 12 \text{ cm}$$ and $$AC = 18 \text{ cm}$$, then
    Solution
    If $$ \dfrac { AD }{ BD } =\dfrac { AE }{ CE } $$ then by converse of basic proportionality theorem we can say that $$DE\;|\;|BC.$$

    $$\begin{aligned}{}\frac{{AD}}{{BD}} &= \frac{{AE}}{{CE}}\quad\quad\quad\dots(i)\\\frac{{BD}}{{AD}} &= \frac{{CE}}{{AE}}\\\frac{{BD}}{{AD}} + 1 &= \frac{{CE}}{{AE}} + 1\\\frac{{BD + AD}}{{AD}}& = \frac{{CE + AE}}{{AE}}\\\frac{{AB}}{{AD}}& = \frac{{AC}}{{AE}}\\\frac{{AD}}{{AB}} &= \frac{{AE}}{{AC}}\quad\quad\quad\dots(ii)\end{aligned}$$

    So, the above calculation implies that instead of an equation $$(i)$$ if we prove that equation $$(ii)$$ is true then also we can say that $$DE\;|\;|BC.$$
    $$\begin{aligned}{}\frac{{AD}}{{AB}} &= \frac{{AE}}{{AC}}\\\frac{8}{{12}} &= \frac{{12}}{{18}}\\\frac{2}{3} &= \frac{2}{3}\quad\quad\quad[\text{Which is true}]\end{aligned}$$

    Hence, proved $$DE\;|\;|BC.$$

  • Question 6
    1 / -0
    In a $$\Delta ABC,\;D\;and\;E$$ are points on the sides $$AB$$ and $$AC$$ respectively such that $$DE\;\parallel\;BC$$. If $$AD=4x-3,\;AE=8x-7,\;BD=3x-1\;and\;CE=5x-3$$, find the value of $$x$$.
    Solution
    In $$\Delta ABC$$, we have
    $$DE\;\parallel\;BC$$
    $$\therefore\;\displaystyle\frac{AD}{DB}=\displaystyle\frac{AE}{EC}\;\;\;\;\;$$[By Basic Proportionality Theorem]
    $$\Rightarrow\;\displaystyle\frac{4x-3}{3x-1}=\displaystyle\frac{8x-7}{5x-3}$$
    $$\Rightarrow\;20x^2-15x-12x+9=24x^2-21x-8x+7$$
    $$\Rightarrow\;20x^2-27x+9=24x^2-29x+7$$
    $$\Rightarrow\;4x^2-2x-2=0$$
    $$\Rightarrow\;2x^2-x-1=0$$
    $$\Rightarrow\;(2x+1)(x-1)=0$$
    $$\Rightarrow\;x=1\;or\;x=-\displaystyle\frac{1}{2}$$
    So, the required value of $$x$$ is $$1$$.
    [$$x=-\displaystyle\frac{1}{2}$$ is neglected as length can not be negative].

  • Question 7
    1 / -0
    In a $$\displaystyle \bigtriangleup ABC $$, AB = AC = 2.5 cm, BC = 4 cm. Find its height from A to the opposite base.
    Solution
    $$ \textrm{In }\triangle ABC $$ In order to find height we need to consider that $$ AD \perp BC $$
    Hence in right angled $$ \triangle ADC $$
    $$ AC^2 = AD^2 + DC^2 $$
    $$ AD^2 = AC^2 - DC^2 $$
    $$ AD^2 = (2.5)^2 - (2)^2 $$
    $$ AD^2 = 2.25 $$
    $$ AD = 1.5 \, cm $$
    Option A is the correct answer.
  • Question 8
    1 / -0
    If $$\Delta ABC\sim \Delta DEF$$ such that area of $$\Delta ABC$$ is $$9 cm^2$$ and area of $$\Delta DEF$$ is $$16 cm^2$$ and $$BC=1.8 cm$$, then EF is
    Solution
    $$ar(\triangle ABC)=9cm^2,\,ar(\triangle DEF)=16cm^2$$ and $$BC=1.8cm$$

    $$\triangle ABC\sim\triangle DEF$$                [ Given ]

    $$\Rightarrow$$  $$\dfrac{ar(\triangle ABC)}{ar(\triangle DEF)}=\dfrac{(BC)^2}{(EF)^2}$$                    [ Area of similar triangle theorem ]

    $$\Rightarrow$$  $$\dfrac{9}{16}=\dfrac{(1.8)^2}{(EF)^2}$$
    Taking square root on both sides,

    $$\Rightarrow$$  $$\dfrac{3}{4}=\dfrac{1.8}{EF}$$

    $$\Rightarrow$$  $$EF=\dfrac{1.8\times 4}{3}$$

    $$\Rightarrow$$  $$EF=\dfrac{7.2}{3}$$

    $$\Rightarrow$$  $$EF=2.4\,cm$$


  • Question 9
    1 / -0
    $$\displaystyle \angle BAC={ 90 }^{ o }$$, AD is its bisector. If $$\displaystyle DE\bot AC$$, prove that $$\displaystyle DE\times \left( AB+AC \right) =AB\times AC$$

    Solution
    It is given that AD is the bisector of $$\displaystyle \angle A$$ of $$\displaystyle \Delta ABC$$.
    $$\displaystyle \therefore \frac { AB }{ AC } =\frac { BD }{ DC } $$
    $$\displaystyle \Rightarrow \frac { AB }{ AC } +1=\frac { BD }{ DC } +1$$ [Adding 1 on both sides]
    $$\displaystyle \Rightarrow \frac { AB+AC }{ AC } =\frac { BD+DC }{ DC } $$
    $$\displaystyle \Rightarrow \frac { AB+AC }{ AC } =\frac { BC }{ DC } $$........(i)
    In $$\displaystyle \Delta 's\quad CDEandCBA$$, we have
    $$\displaystyle \angle DCE=\angle BCA$$ [Common]
    $$\displaystyle \angle DEC=\angle BAC$$ [Each equal to $$\displaystyle { 90 }^{ o }$$]
    So, by AA-criterion of similarity
    $$\displaystyle \Delta CDE\sim \Delta CBA$$
    $$\displaystyle \Rightarrow \frac { CD }{ CB } =\frac { DE }{ BA } $$
    $$\displaystyle \Rightarrow \frac { AB }{ DE } =\frac { BC }{ DC } $$.......(ii)
    From (i) and (ii), we have
    $$\displaystyle \Rightarrow \frac { AB+AC }{ AC } =\frac { AB }{ DE } $$
    $$\displaystyle \Rightarrow DE\times \left( AB+AC \right) =AB\times AC$$.
  • Question 10
    1 / -0
    In the figure, $$\displaystyle PQ\parallel BC$$ and AP : PB = 1 : 2. Find $$\displaystyle \frac { ar\left( \Delta APQ \right)  }{ ar\left( \Delta ABC \right)  } $$.

    Solution
    If $$AP : PB = 1 : 2$$ then $$AP : AB$$ will be $$1 : 3$$.

    So, in similar triangles, the ratio of the area of $$\dfrac { \Delta \quad APQ }{ \Delta \quad ABC } \quad =\quad { \left(\dfrac { 1 }{ 3 } \right)\quad  }^{ 2 }=\quad \dfrac { 1 }{ 9 } \\ $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now