Self Studies

Triangles Test - 34

Result Self Studies

Triangles Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given two similar triangles one of which has twice the perimeter of the other, by what factor is the area of the larger triangle bigger than the smaller ?
    Solution
    $$Let\quad \triangle ABC\quad and\quad \triangle PQR\quad be\quad smaller\quad and\quad bigger\quad triangles\quad \\ Given\quad \triangle ABC\sim \triangle PQR\\ 2Perimeter\quad of\quad \triangle ABC=Perimeter\quad of\quad \triangle PQR\\ \Rightarrow \frac { Perimeter\quad of\quad \triangle ABC }{ Perimeter\quad of\quad \triangle PQR } =\frac { 1 }{ 2 } \\ Two\quad similar\quad triangles\quad who\quad have\quad scale\quad factor\quad of\quad a:b\quad then\quad ratio\quad of\quad there\quad areas\quad will\quad be\\ { a }^{ 2 }:{ b }^{ 2 }\\ \Rightarrow \frac { Area\quad of\quad \triangle ABC }{ Area\quad of\quad \triangle PQR } =({ \frac { 1 }{ 2 } ) }^{ 2 }=\frac { 1 }{ 4 } \\ \Rightarrow Area\quad of\quad \triangle PQR=4\times Area\quad of\quad \triangle ABC\\ \therefore Area\quad of\quad larger\quad triangle\quad is\quad 4\quad times\quad bigger\quad than\quad area\quad of\quad smaller\quad triangle.\\ Hence\quad option\quad (B)is\quad correct\quad answer$$

  • Question 2
    1 / -0
    In the given figure, PA, OB and RC are each perpendicular to AC. Which of the relations hold true?

    Solution
    In $$\displaystyle \Delta PAC$$, we have $$\displaystyle BQ\parallel AP$$
    $$\displaystyle \Rightarrow \frac { BQ }{ AP } =\frac { CB }{ CA } \quad \left[ \therefore \Delta CBQ\sim \Delta CAP \right] by AAA$$
    $$\displaystyle \Rightarrow \frac { y }{ x } =\frac { CB }{ CA } $$.....(i)
    In $$\displaystyle \Delta ACR$$, we have $$\displaystyle BQ\parallel CR$$
    $$\displaystyle \Rightarrow \frac { BQ }{ CR } =\frac { AB }{ AC } \left[ \therefore \Delta ABQ\sim \Delta ACR \right] $$ by AAA
    $$\displaystyle \Rightarrow \frac { y }{ z } =\frac { AB }{ AC } $$......(ii)
    Adding (i) and (ii), we get
    $$\displaystyle \frac { y }{ x } +\frac { y }{ z } =\frac { CB }{ AC } +\frac { AB }{ AC } $$
    $$\displaystyle \Rightarrow \frac { y }{ x } +\frac { y }{ z } =\frac { AB+BC }{ AC } $$
    $$\displaystyle \Rightarrow \frac { y }{ x } +\frac { y }{ z } =\frac { AC }{ AC } $$
    $$\displaystyle \Rightarrow \frac { y }{ x } +\frac { y }{ z } =1$$
    $$\displaystyle \Rightarrow \frac { 1 }{ x } +\frac { 1 }{ z } =\frac { 1 }{ y } $$.
    hence Proved
  • Question 3
    1 / -0
    In the following figure $$\Delta ABC \sim \Delta APQ\ \ \ ,A(\Delta APQ) = 4A(\Delta ABC)$$. Find the ratio $$\displaystyle \dfrac{BC}{PQ}$$

    Solution
    $$\Delta ABC \sim \Delta APQ$$              (Given)

    Apply the properties of similar triangles

    $$\displaystyle \therefore \dfrac{A(\Delta ABC)}{A(\Delta APQ)} = \dfrac{BC^2}{PQ^2}$$ ......$$(i)$$

    [$$\therefore$$ Ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides]

    But $$ A(\Delta APQ) = 4A(\Delta ABC)$$          (given)

    $$\displaystyle \therefore \frac{A(\Delta ABC)}{A(\Delta APQ)} = \frac{1}{4}$$       [From $$(i)$$ and $$(ii)$$

    $$\displaystyle \therefore  \frac{BC}{PQ} = \frac{1}{2}$$   
  • Question 4
    1 / -0
    In $$\Delta ABC,$$ $$D,$$ $$E$$ and $$F$$ are the mid points of the sides $$BC,\ CA$$ and $$AB$$ respectively. The area of $$\triangle ABC$$ is $$24\ cm^2,$$ then the area of $$\triangle DEF$$ is
    Solution

    In $$\triangle ABC$$,

    $$D$$ and $$E$$ are midpoints of sides $$BC$$ and $$AC$$ respectively.

    By midpoint theorem,

    $$DE = \dfrac 12 AB$$ and $$DE \parallel AB$$     $$...(1)$$

    In $$\triangle CAB$$ and $$\triangle CED$$,

    $$\angle C$$ is the common angle.

    $$\angle CAB = \angle CED$$          $$[$$alternate angles since $$DE \parallel AB]$$

    $$\therefore \triangle CAB \sim \triangle CED$$              $$[$$AA test of similarity$$]$$

    $$\therefore \dfrac {CA}{CE} = \dfrac {AB}{DE} = \dfrac {BC}{DC} = \dfrac 21$$        $$...(2)$$        [C.S.S.T and from (1)]


    Similarly, we can prove $$\triangle ABC \sim \triangle AFE \sim \triangle FBD$$         [AA test of similarity]

    Hence, $$\dfrac {EF}{BC} = \dfrac {DE}{AB} = \dfrac {DF}{AC} = \dfrac 12$$    ....C.S.S.T

    $$\therefore \triangle ABC \sim \triangle DEF$$           [SSS test of similarity] 

    By theorem on ratio of areas of similar triangles, we get

    $$\Rightarrow \dfrac {A(\triangle DEF)}{A(\triangle ABC)} = \left(\dfrac {DE}{AB}\right)^2$$

    $$\Rightarrow A(\triangle DEF) = \dfrac 14 \times 24 $$

                               $$= 6\ cm^2$$

  • Question 5
    1 / -0
    If the ratio of the corresponding sides of two similar triangles is $$2:3$$ then the ratio of their corresponding altitude is
    Solution
    If two triangles are similar ,then the ratio of their corresponding sides and altitude are also same. Therefore the ratio of the altitude is $$2:3.$$
  • Question 6
    1 / -0
    Two poles of height $$10$$ m and $$15$$ m, stand on a plane ground. If the distance between their feet is $$12$$m, the distance between their tops is:
    Solution
    Since the two poles of height $$10$$ m and $$15$$ m stand on a plane ground, therefore, their difference will be the perpendicular of the plane that is $$15 - 10 = 5$$ m.

    It is given that the distance between their feet is $$12$$ m which means the base $$= 12$$ m.

    Since we know the base and height, we can calculate the hypotenuse $$h$$, that is:

    $${ h }^{ 2 }={ 5 }^{ 2 }+{ 12 }^{ 2 }$$

    $$\Rightarrow $$$${ h }^{ 2 }=25+144$$

    $$\Rightarrow $$$${ h }^{ 2 }=169$$

    $$\Rightarrow $$$${ h }=\sqrt { 169 } $$

    $$\Rightarrow $$$${ h }=13$$ m

    So the distance between their tops is $$13$$ m.

  • Question 7
    1 / -0
    Two isosceles triangles have equal vertical angles and their areas are in the ratio of 9 : 16. Then their heights are in the ratio of:
    Solution

    Let the two isosceles triangles be $$\triangle ABC$$ and $$\triangle DEF$$.

    Given: $$\angle A = \angle D$$       ....vertical angles of triangles

    $$\dfrac {AB}{DE} = \dfrac {BC}{EF}$$    

    So, $$\triangle ABC \sim \triangle DEF$$        ....S.A.S test of similarity

    Hence, $$\dfrac {A(\triangle ABC)}{A(\triangle DEF)} = \left(\dfrac {h_1}{h_2}\right)^2$$

    where, $$h_1$$ and $$h_2$$ are heights of the two triangles respectively.

    $$\dfrac {9}{16} = \dfrac {(h_1)^2}{(h_2)^2}$$

    $$\dfrac {h_1}{h_2} = \dfrac 34$$.

  • Question 8
    1 / -0
    P and Q are the mid points of the sides AB and BC respectively of the triangle ABC, right-angled at B, then:
    Solution
    $$AQ^2=AB^2+BQ^2$$

    since Q is midpoint on $$BC$$, $$BQ=\dfrac{BC}{2}$$

    $$\displaystyle AQ^2=AB^2+\left(\frac{BC}{2}\right)^2$$

             $$\displaystyle=AB^2+\frac{BC^2}{4}$$ ...(i)

    Similarly $$CP^2=BC^2+BP^2$$

    since P is midpoint on AB, $$BP =\dfrac{AB}{2}$$

    $$\displaystyle CP^2=BC^2+\left(\frac{AB}{2}\right)^2$$ 

    $$\displaystyle\ \ \ \ \ \ \ =\frac{AB^2}{4}+BC^2$$ ...(ii)

    $$\displaystyle\therefore AQ^2+CP^2= AB^2+\frac{BC^2}{4}+\frac{AB^2}{4}+BC^2$$   ( from equations (i) and (ii) )
                               $$ \displaystyle =AB^2\left(1+\frac{1}{4}\right)+BC^2\left(1+\frac{1}{4}\right)$$

                               $$\displaystyle=\frac{5}{4}(AB^2+BC^2)=\frac{5}{4}AC^2$$

  • Question 9
    1 / -0
    If two triangles are similar then, ratio of corresponding sides are:
    Solution
    Similar triangles have $$:$$
    $$i)$$ All their angles equal
    $$ii)$$ Corresponding sides have the same ratio
    So, option $$B$$ is correct. 
  • Question 10
    1 / -0
    In a $$\triangle ABC$$, a straight line parallel to $$BC$$ intersects $$AB$$ and $$AC$$ at point D and E respectively. If the area of $$\triangle ADE$$ is one-fifth of the area of $$\triangle ABC$$ and $$BC = 10$$ cm, then DE equals:
    Solution

    $$\displaystyle \frac{\mbox {Area  of} \Delta ADE}{\mbox {Area  of} \Delta ABC} = \frac{DE^2}{BC^2}$$

    $$\displaystyle \frac{\displaystyle \frac{1}{5} \times \mbox{Area  of} \Delta ABC}{\mbox {Area of } \Delta ABC} = \frac{DE^2}{10^2}$$

    $$\displaystyle \frac{1}{5} = \frac{DE^2}{100}$$

    $$\displaystyle DE^2 = \frac{100}{5} = 20$$

    $$\therefore DE = \sqrt{20} = 2 \sqrt 5 cm$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now