Self Studies

Triangles Test - 37

Result Self Studies

Triangles Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In Figure , $$AB = BC$$. If the area of $$\triangle$$ $$ABE$$ is $$x$$, calculate the area of $$\triangle$$ $$ACD$$.

    Solution

    $$AB=BC$$         ....Given

    So, $$AB: AC = 1:2$$          ...(I)

    $$\angle BED + \angle BEA = 180^o$$         ...Angles in linear pair

    $$\therefore 118^o + \angle BEA = 180^o$$

    $$\therefore \angle BEA = 62^o = \angle CDA$$    ...(II)

    In $$\triangle ABE$$ and $$\triangle ACD$$ 

    $$\angle A$$ is the common angle.

    $$\therefore \angle BEA = \angle CDA$$    ... from (II)

    $$\triangle ABE \sim \triangle ACD$$         ....AAA test of similarity

    So, $$\dfrac {A(\triangle ABE)}{A(\triangle ACD)} = \left(\dfrac {AB}{AC}\right)^2$$           ....Theorem on ratio of areas of similar triangles

    $$\Rightarrow \dfrac {A(\triangle ABE)}{A(\triangle ACD)} = \left(\dfrac 12\right)^2$$

    $$\Rightarrow \dfrac {x}{A(\triangle ACD)} = \dfrac 14$$

    $$A(\triangle ACD) = 4x$$ sq. units

  • Question 2
    1 / -0
    In the figure below, $$\angle ABC=\angle DFE,\angle BAC=\angle FDE$$, $$D$$ and $$F$$ are on $${ AB } ,\ { AD } ={ FB } $$ and the distances are shown in the figure itself in centimeters. Calculate the length of $${ AD } $$, in centimeters.

    Solution

    In $$\triangle ABC$$ and $$\triangle DFE,$$

    $$\angle ABC =\angle DFE$$                   [Given]

    $$\angle BAC =\angle FDE$$                   [Given]


    Hence, by $$AAA$$ rule of similarity,

    $$\triangle ABC \sim \triangle DFE$$


    As, the two triangles are similar their sides will be proportional as well,

    $$\therefore \dfrac {AB}{DF} = \dfrac {BC}{FE} = \dfrac {AC}{DE}\quad\quad\quad\quad\dots(i)$$


    Let $$AD=BF=x$$

    $$AB = AD+DF+BF$$

    $$AB = 6+2x$$


    From equation $$(i),$$

    $$\begin{aligned}{}\frac{{AB}}{{DF}} &= \frac{{AC}}{{DE}}\\\frac{{6 + 2x}}{6} &= \frac{{20}}{{12}}\\72 + 24x& = 120\\24x& = 48\\x& = 2\end{aligned}$$

    Hence,

    $$AD=BF=2\ cm.$$

  • Question 3
    1 / -0
    In the following figure, what is the value of $$x$$ in terms of $$y$$?

    Solution
    As per Pythagoras theorem,
    hypotenuse$$^{ 2 }=$$ base $$^{ 2 }+$$ perpendicular $$^{ 2 }$$
    In the given figure, $$h=x, b=3y, p=y$$
    As per theorem, we have
    $$x^{ 2 }={ \left( 3y \right)  }^{ 2 }+{ y }^{ 2 }$$
    $$x=\sqrt { 9{ y }^{ 2 }+{ y }^{ 2 } } $$
    $$x=\sqrt { { 10y }^{ 2 } } $$$$=y\sqrt { 10 } $$
  • Question 4
    1 / -0
    In the given figure, find the value of $$AE$$ if $$AC = 5.6$$ cm and $$DE || BC$$.

    Solution
    In given figure $$\angle ADE=\angle ACB$$ and $$AC=5.6$$ cm

    $$DE\parallel BC$$

    $$\angle BAC=\angle DAE$$ ...... (Common angle)

    Then $$\angle ABC=\angle AED$$ 

    $$\therefore \Delta ADE\sim \Delta ABC$$ ...... [By AAA postulates of similarity]

    $$\therefore \dfrac{AD}{AB}=\dfrac{AE}{AC}$$

    $$\Rightarrow \dfrac{3}{3+5}=\dfrac{AE}{5.6}$$

    $$\Rightarrow AE=\dfrac{3}{8}\times 5.6=2.1$$ cm
  • Question 5
    1 / -0
    In similar triangles $$\triangle ABC$$ and $$\triangle FDE, DE = 4 cm, BC = 8 cm$$ and area of $$\triangle FDE = 25 cm^2$$. What is the area of $$\Delta ABC$$?
    Solution
      $$DE=4\,cm,\,BC=8\,cm$$ and $$ar(\triangle FDE)=25\,cm^2$$                  [ Given ]

    $$\Rightarrow$$  $$\triangle ABC\sim\triangle FDE$$             [ Given ]
    $$\Rightarrow$$  $$\dfrac{ar(\triangle ABC)}{ar(\triangle FDE)}=\dfrac{(BC)^2}{(DE)^2}$$                       [ By area of similar triangle theorem ]

    $$\Rightarrow$$  $$\dfrac{ar(\triangle ABC)}{25}=\dfrac{(8)^2}{(4)^2}$$

    $$\Rightarrow$$  $$ar(\triangle ABC)=\dfrac{64}{16}\times 25$$

    $$\Rightarrow$$  $$ar(\triangle ABC)=4\times 25$$
    $$\therefore$$  $$ar(\triangle ABC)=100\,cm^2$$
  • Question 6
    1 / -0
    What is the ratio of the areas of two similar triangles whose corresponding sides are in the ratio 15:19?
    Solution
    We know ratio  of areas of two similar triangles is equal to the ratio of the square of their corresponding sides.
    Ratio of sides $$=\dfrac{15}{19}$$
    Ratio of areas $$={ \left( \dfrac { 15 }{ 19 }  \right)  }^{ 2 }=\dfrac { 225 }{ 361 } $$
    So, option $$C$$ is correct.
  • Question 7
    1 / -0
    In the figure shown above, $$DE$$ is parallel to $$BC$$ and the ratio of the areas of $$\triangle ADE$$ and trapezium $$BDEC$$ is $$4 : 5$$. What is $$DE : BC$$?

  • Question 8
    1 / -0
    The areas of two similar triangles are 100 $$\mathrm{cm^2}$$ and 64 $$\mathrm{cm^2}$$ respectively. If the median of greater side of the first triangle is 13 cm, find the corresponding median of the other triangle.
    Solution
    Given that the areas of two similar triangles are $$100 \ \mathrm{cm^2}$$ and $$64 \ \mathrm{cm^2}$$.
    and median of greater triangle is $$13 \ \mathrm{cm}$$.
    Let the median of the other triangle be $$x \ \mathrm{cm}$$

    We know that, the areas of two similar triangles are in the ratio of the squares of their corresponding sides or medians.

    The ratio of the areas of triangles $$=\dfrac{100}{64}=\dfrac{25}{16}$$

    $$\therefore \dfrac{(13)^{2}}{(x)^{2}}=\dfrac{25}{16}$$

    $$\Rightarrow \dfrac{169}{x^{2}}=\dfrac{25}{16}$$

    $$\Rightarrow 25x^{2}=169\times 16$$

    $$\Rightarrow x^{2}=\dfrac{2704}{25}=108.16$$

    $$\Rightarrow x=10.4\ \mathrm{cm}$$

    Hence, the median of the other triangle is $$10.4 \ \mathrm{cm}$$
  • Question 9
    1 / -0
    In Figure , $$\overline{QR} = \overline{RS}$$. If the area of $$\triangle RST$$ is $$\dfrac{c}{2}$$, what is the area of $$\triangle QSP$$?

    Solution

    $$QR=RS$$         ....Given

    So, $$SR: SQ = 1:2$$          ...(I)

    $$\angle RTP + \angle RTS = 180^o$$         ...Angles in linear pair

    $$\therefore 126^o + \angle RTS = 180^o$$

    $$\therefore \angle RTS = 54^o = \angle SPQ$$    ...(II)

    In $$\triangle RST$$ and $$\triangle QSP$$ 

    $$\angle S$$ is the common angle.

    $$\therefore \angle RTS = \angle SPQ$$    ... from (II)

    $$\triangle RST \sim \triangle SPQ$$         ....AAA test of similarity

    So, $$\dfrac {A(\triangle RST)}{A(\triangle SPQ)} = \left(\dfrac {RS}{SQ}\right)^2$$           ....Theorem on ratio of areas of similar triangles

    $$\Rightarrow \dfrac {A(\triangle RST)}{A(\triangle SPQ)} = \left(\dfrac 12\right)^2$$

    $$\Rightarrow \dfrac {\frac c2}{A(\triangle SPQ)} = \dfrac 14$$

    $$A(\triangle SPQ) = 2c$$ sq. units

  • Question 10
    1 / -0
    In Figure , $$\overline{EG} || \overline{DH}$$, and the lengths of segments $$\overline{DE}$$ and $$\overline{EF}$$ are as marked. If the area of $$\triangle EFG$$ is a, calculate the area of $$\triangle DFH$$ in terms of $$a$$.

    Solution

    Given: $$EG \parallel DH$$

    By basic proportionality theorem,

    $$\dfrac {ED}{EF} = \dfrac {GH}{GF}$$    

    So, $$\dfrac {EF+ED}{EF} = \dfrac {GF+GH}{GF}$$       ....By componendo

     $$\therefore \dfrac {FD}{EF} = \dfrac {FH}{GF} = \dfrac 54$$         ....(I)

    In $$\triangle FEG$$ and $$\triangle FDH$$

    $$\angle F$$ is the common angle

    And, $$\dfrac {EF}{ED} = \dfrac {GF}{GH}$$     ....From (I)

    $$\therefore \triangle FEG \sim \triangle FDH$$         ....S.A.S test of similarity

    By theorem on area of similar triangles, we get

    $$\dfrac {A(\triangle FDH)}{A(\triangle FEG)} = \left(\dfrac {FD}{EF} \right)^2$$

    $$\Rightarrow \dfrac {A(\triangle FDH)}{a} = \left(\dfrac {5}{4} \right)^2$$

    $$\Rightarrow A(\triangle FDH) = \dfrac {25}{16} a$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now