Self Studies

Triangles Test - 39

Result Self Studies

Triangles Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Ram goes $$\sqrt{12.5}km$$ towards west from a certain point. Then after turning to his right he again goes same distance. In the end he goes $$25km$$ towards South-East. How far is he now from his starting point?
    Solution
    As shown in figure, Ram starts from C and goes to B and consecutively to A, and then travels 25 km. He will cross point C because ABC is right angled isosceles triangle, so by Pythagoras theorem 
    $${ AC }^{ 2 }={ AB }^{ 2 }+{ BC }^{ 2 }$$
    $${ AC }^{ 2 }={12.5}+{12.5}$$
    $$AC = 5$$
    So, further $$20 km$$ more will be walked.

  • Question 2
    1 / -0
    ABCD is parallelogram and P is the mid point of the side AD. The line BP meets the diagonal AC in Q. Find the ratio AQ $$:$$ QC.
    Solution
    Join $$AC$$ and $$BP$$. 
    $$\angle AQP = \angle CQB$$                   [Vertically opposite angles]
    $$ \angle APQ = \angle CBQ $$             [Alternate interior angles between two parallel lines $$AD$$ and $$BC$$]

    Hence, by $$AAA$$ similarity criterion,
    $$\Delta APQ \sim \Delta CBQ $$

    Hence, $$ \dfrac{AP}{BC} = \dfrac{AQ}{QC}$$
    Since, $$AD = BC,\  \dfrac{AP}{BC} = \dfrac{AP}{AD}$$

    Now, $$P$$ is the midpoint of $$AD$$
    Hence, $$\dfrac{AP}{BC} = \dfrac{AP}{AD} = \dfrac{1}{2} $$

    $$\Rightarrow \dfrac{AQ}{QC} = \dfrac{1}{2}$$

    Hence, $$AQ:QC=1:2$$.

  • Question 3
    1 / -0
    In a $$\triangle ABC, P$$ and $$Q$$ are the points on sides $$AB$$ and $$BC$$ respectively, such that $$PQ\parallel BC$$. Also, $$AP=2\ cm, PB=4\ cm, AQ=3\ cm$$ and $$QC=6\ cm$$ then find $$BC$$
    Solution
    Let $$ABC$$ be a triangle. Let $$P,Q$$ are the points on sides $$AB,BC$$ respectively such that $$PQ\: || \:BC$$.

    Given $$AP=2\:cm, PB=4\: cm, AQ=3\:cm, QC=6\:cm$$.

    We have to find $$BC$$.

    The pictorial representation of the problem is shown below
                                           
    Since we have $$PQ\: || \:BC$$ we get $$\Delta APQ \sim \Delta ABC$$ by AAA

    $$\Rightarrow \dfrac{AP}{AB}=\dfrac{AQ}{AC}=\dfrac{PQ}{BC}$$

    Substituting the values we get,

    $$\Rightarrow \dfrac{2}{6}=\dfrac{3}{9}=\dfrac{PQ}{BC}$$

    $$\Rightarrow \dfrac{1}{3}=\dfrac{1}{3}=\dfrac{PQ}{BC}$$

    $$\Rightarrow \dfrac{1}{3}=\dfrac{PQ}{BC}$$

    $$\Rightarrow BC=3PQ$$

  • Question 4
    1 / -0
    Triangles ABC and DEF are similar. If their areas are 64 $$cm^2$$ and 49 $$cm^2$$ and if AB is 7 cm, then find the value of DE.
    Solution
    $$\Delta ABC \Delta DEF$$
    $$\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}$$.
    We know that,
    $$\dfrac{Area of \Delta  ABC}{ Area of \Delta  DEF} = $$ $$\Rightarrow \dfrac{64}{49} = \left ( \dfrac{7}{DE} \right )^2$$
    $$\Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \frac{7}{DE} \right )^2 \Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \dfrac{7}{DE} \right )^2 = \dfrac{49}{8}$$cm 
  • Question 5
    1 / -0
    In $$\triangle DEF$$ &$$ \triangle PQR$$,  $$\angle R = \angle F$$, then both triangles are similar if
    Solution
    In$$\triangle DEF$$ and $$\triangle PQR$$ 
    if $$\angle R=\angle F$$
    then the ratios of the sides including these angles must be equal. 
    So, that SAS criteria of similarity can be applied.
    i.e $$\dfrac{DF}{PR}=\dfrac{FE}{RQ}$$
  • Question 6
    1 / -0
    Check if the triangles are similar. If similar, write the similarity in symbolic form. Mention the similarity condition used.

    Solution
    $$AB=XY$$
    $$ =>\cfrac { AB }{ XY } =1\quad \quad -(i)$$
    $$ BC=XZ$$
    $$ =>\cfrac { BC }{ XZ } =1\quad \quad -(ii)$$
    $$ \angle ABC=\angle YXZ$$
    $$ \therefore \cfrac { AB }{ XY } =\cfrac { BC }{ XZ } $$
    $$ and\quad included\quad angles\quad equal$$
    $$ =>\angle ABC=\angle YXZ$$
    $$ \therefore \triangle ABC\sim \triangle XYZ\quad by\quad S.A.S\quad similarity$$

  • Question 7
    1 / -0
    $$ABC$$ and $$BDE$$ are two equilateral triangles such that $$D$$ is the mid point of $$BC$$. Ratio of the areas of triangle $$ABC$$ and $$BDE$$ is
    Solution
    $$\triangle ABC \sim \triangle BDE$$                            (both are equilateral triangles)

    According to the given condition, $$BC=\dfrac{BD}{2}$$

    $$\Rightarrow \triangle ABC : \triangle BDE = AB^2 : BD^2$$


                                     $$= AB^2 :  (\dfrac{1}{2} BC)^{2} $$
                                              
                                     $$ = AB^2 : \dfrac{1}{4} BC^2 $$

                                     $$= 4 : 1$$           $$(\because AB = BC)$$

  • Question 8
    1 / -0
    Given ΔABC is similar to ΔPQRΔABCisΔPQR. Where AB=1cm and PQ =3 cm .Find the ratio of their areas.
    Solution
    $$\dfrac{AB}{PQ}=\dfrac{1}{3}$$
    $$\dfrac{ar\Delta ABC}{ar\Delta PQR}=\left(\dfrac{AB}{PQ}\right)^2=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}$$.
  • Question 9
    1 / -0
    Triangle $$DEF$$ is similar to Triangle $$ABC$$, $$DE:AB=2:3$$ and area of triangle $$DEF =44 sq. cm.$$. Area of triangle $$ABC =$$
  • Question 10
    1 / -0
    Given, $$\triangle ABC$$ $$\sim \triangle PQR.$$ If $$\dfrac{ar(\triangle ABC)}{ar(\triangle PQR)}=\dfrac{9}{4}$$ and $$AB=18$$ cm, then find the length of $$PQ.$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now