Self Studies

Triangles Test - 41

Result Self Studies

Triangles Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If straight-line divides two sides of a triangle proportionally then the straight line is parallel to the third side is called
    Solution
    Thales theorem states that 'If a line is drawn parallel to one side of triangle, then it divides other two sides in equal ratio'

    Converse of Thales theorem states that 'If a straight line divides two sides of triangle in equal ratio, then it is parallel to third side of triangle'
  • Question 2
    1 / -0
    The corresponding altitudes of two similar triangles are $$9\,cm$$ and $$15\,cm$$ respectively then the ratio between their areas.
    Solution
    Let $${ h }_{ 1 }=9\ cm$$
          $${ h }_{ 2 }=15\ cm$$

    Ratio of areas of two similar triangles is given by,
    $$\dfrac { { A }_{ 1 } }{ { A }_{ 2 } } ={ \left( \dfrac { { h }_{ 1 } }{ { h }_{ 2 } }  \right)  }^{ 2 }$$

    $$\dfrac { { A }_{ 1 } }{ { A }_{ 2 } } ={ \left( \dfrac { { h }_{ 1 } }{ { h }_{ 2 } }  \right)  }^{ 2 }$$

    $$\therefore \dfrac { { A }_{ 1 } }{ { A }_{ 2 } } =\dfrac { 81 }{ 225 } $$

    $$\therefore { A }_{ 1 }:{ A }_{ 2 }=81:225$$
  • Question 3
    1 / -0
    Area of similar triangles are proportional to
    Solution
    Ratio of areas of two similar triangles is given by-
    1) Ratio of squares of their corresponding sides
    2) Ratio of squares of their corresponding altitudes
    3) Ratio of squares of their corresponding medians 
  • Question 4
    1 / -0
    In figure, $$DE\parallel BC$$, $$AD=4cm,DB=6cm$$ and $$AE=5cm$$ then $$EC$$ will be:

    Solution
    Given,
    $$AD=4cm$$
    $$DB=6cm$$
    $$AE=5cm$$

    In $$\triangle ABC$$
    $$DE\parallel BC$$
    $$\therefore \cfrac{AD}{DB}=\cfrac{AE}{EC}$$      (By basic prop.theorem)
    $$\Rightarrow$$ $$\cfrac{4}{6}=\cfrac{5}{EC}$$
    $$\Rightarrow$$ $$EC=\cfrac{6\times 5}{4}$$
    $$\Rightarrow$$ $$EC=7.5$$

    Hence, the length of $$EC$$ is $$7.5\ cm$$

  • Question 5
    1 / -0
    If in $$\triangle ABC$$ and $$\triangle DEF$$, $$\angle A={50}^{o}$$, $$\angle {B}={70}^{o}$$, $$\angle {C}={60}^{o}$$, $$\angle D={60}^{o}$$, $$\angle E={70}^{o}$$ and $$\angle F={50}^{o}$$ then which one is correct?

    Solution
    $$\angle A=\angle F={50}^{o}$$
    $$\angle B=\angle E={70}^{o}$$
    $$\angle C=\angle D={60}^{o}$$
    $$\triangle ABC\sim \triangle FED$$ BY AAA
  • Question 6
    1 / -0
    If $$\triangle ABC\sim \triangle DEF$$ and $$DE=8cm,AB=10cm$$ then the Ratio of $$ar(\triangle ABC)$$ to $$ar(\triangle DEF)=$$
    Solution
    We know that if $$\triangle ABC\sim \triangle DEF$$ then,

    $$\cfrac { ar.\left( \triangle ABC \right)  }{ ar.\left( \triangle DEF \right)  } =\cfrac { { \left( AB \right)  }^{ 2 } }{ { \left( DE \right)  }^{ 2 } } $$

                               $$={ \left( \cfrac { 10 }{ 8 }  \right)  }^{ 2 }=\cfrac{25}{16}$$

    $$ar(\triangle ABC):ar(\triangle DEF)=25:16$$
  • Question 7
    1 / -0
    $$\triangle ABC$$ and $$\triangle PQR$$ are two similar triangles whose areas are $$100{cm}^{2}$$ and $$144{cm}^{2}$$ and height of $$\triangle ABC$$ is $$6cm$$ then height of $$\triangle PQR$$ will be:
    Solution
    We know that ratio of areas of two similar triangles is equal to ratio of square of corresponding heights. Let corresponding height of $$\triangle PQR$$ is $$x\,cm$$
    $$\cfrac { ar.\quad \triangle ABC }{ ar.\quad \triangle PQR } =\cfrac { (corresponding\quad height\quad of\quad \triangle ABC)^2}{ (corresponding\quad height\quad of\quad \triangle PQR )^2}$$
    $$\Rightarrow \cfrac { 100 }{ 144 } =\cfrac { { 6 }^{ 2 } }{ { x }^{ 2 } } $$
    $$\Rightarrow$$ $$\cfrac{100}{144}=\cfrac{36}{{x}^{2}}$$
    $$\Rightarrow$$ $$100{x}^{2}=36\times 144$$
    $$\Rightarrow$$ $${x}^{2}=\cfrac{36\times 144}{100}$$
    $$\Rightarrow$$ $$x=\sqrt { \cfrac { 36\times 144 }{ 100 }  } =\cfrac { 6\times 12 }{ 10 } =\cfrac { 72 }{ 10 } =7.2cm$$
  • Question 8
    1 / -0
    The point $$D$$ and $$E$$ lies on sides $$AB$$ and $$AC$$ of $$\triangle ABC$$ such that $$DE\parallel BC$$ and $$AD=8cm,AB=12cm$$ and $$AE=12cm$$, then $$CE$$ will be:

    Solution
    In $$\triangle ABC$$
    $$DE\parallel BC$$
    $$\cfrac{AD}{BD}=\cfrac{AE}{CE}$$ (Basic prop. theorem)
    $$\cfrac{AD}{AB-AD}=\cfrac{AE}{CE}$$
    $$\Rightarrow$$ $$\cfrac{8}{12-8}=\cfrac{12}{CE}$$
    $$\Rightarrow$$ $$\cfrac{8}{4}=\cfrac{12}{CE}$$
    $$\Rightarrow$$ $$8\times CE=12\times 4$$
    $$\Rightarrow$$ $$CE=\cfrac{12\times 4}{8}$$
    $$\Rightarrow$$ $$CE=6cm$$
  • Question 9
    1 / -0
    In figure, if $$DE\parallel AB$$ then $$AD=2cm$$, $$DC=3cm$$ and $$BE=3cm$$ and then value of $$CE$$

    Solution
    Since $$DE\parallel AB$$, according to question here $$AD=2cm, DC=3cm$$ and $$BE=3cm$$
    Thus by basic Prop. Theorem
    $$\cfrac{CD}{AD}=\cfrac{CE}{BE}$$
    $$\Rightarrow$$ $$CE=\cfrac{BE\times DC}{AD}$$
    $$CE=\cfrac{3\times 3}{2}=4.5cm$$
  • Question 10
    1 / -0
    In $$\triangle \text{ABC}$$ if $$\text{AB=5 cm, BC=12 cm}$$ and $$\text{AC=13 cm}$$, then $$\angle \text{B}$$ will be:
    Solution

    In $$\triangle ABC$$,
    $${(AB)}^{2}+{(BC)}^{2}={(5)}^{2}+{(12)}^{2}$$
                                  $$=25+144=169=13^2=(AC)^2$$
                                 $$\implies AC=13$$
    The converse of the Pythagoras theorem states that if the square of the longer side of a triangle is equivalent to the sum of its two shorter sides, then it must be a right triangle. 
    $$\therefore  ~~\triangle ABC$$ is right angle triangle, in which $$\angle B={90}^{\circ}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now