Self Studies

Introduction to Trigonometry Test - 12

Result Self Studies

Introduction to Trigonometry Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a right triangle ABC, right-angled at B, sin A=12. The value of tan A is ___.
    Solution

    sin A12 = PerpendicularHypotenuse

    Hypotenuse2 = Perpendicular2+Base2

    22=12+Base2

    Base2=22-12

    = 2 - 1 = 1

    tan APerpendicularBase

    11 =1

    Hence, the correct option is (A).

  • Question 2
    1 / -0

    sec A = 125 for some value of angle A. Is this statement correct?

    Solution

    HypotenuseSide adjacent to A=125

    ACAB=125

    Let AC be 12kAB will be 5k, where k is a positive integer.

    Applying Pythagoras theorem in ABC, we obtain

    AC2=AB2+BC2

    12k2=5k2+BC2

    144k2=25k2+BC2

    BC2=119k2

    BC=10.9k

    It can be observed that for given two sides AC=12k and AB=5k,

    BC should be such that,

    AC-AB<BC<AC+AB

    12k-5k<BC<12k+5k

    7k<BC<17k

    However, BC=10.9k. Clearly, such a triangle is possible and hence, such a value of sec A is possible.

    So, the given statement is true.

    Hence, the correct option is (A).

  • Question 3
    1 / -0
    If cosec θ=54, the value of sin2θ is:
    Solution

    cosec θ is the reciprocal of sin θ i.e., 

    cosec θ = 1sinθ = HypotenusePerpendicular

    So, sin θ will be PerpendicularHypotenuse

    45

    ∴ sin2θ=Perpendicular2Hypotenuse2=4252

    1625

    Hence, the correct option is (D).

  • Question 4
    1 / -0

    Given 15 cot A = 8, find sin A and sec A.

    Solution

    Given,

    15 cot A=8

    cot A=815

    tan A=158     tan A=1cot A


    We know that,

    tan θ=opposite sideadjacent side

    Consider the attached figure, triangle ABC.

    From Pythagoras theorem,

    AC2=AB2+BC2

    AC2=82+152=64+225=289

    AC=17

    cos A=adjacent sideHypotenuse=ABAC=817

    sec A=1cos A=1817178

    sin A=opposite sideHypotenuse=BCAC=1517

    Hence, the correct option is (A).

  • Question 5
    1 / -0
    What is the value of sec3θ·cot θ?
    Solution

    sec3θ×cot θ

    1cos3θ×1tan θ

    Converting it into angle formula

    1BaseHypotenuse3×1PerpendicularBase

    Hypotenuse3Base2×1Perpendicular

    Hypotenuse2Base2×HypotenusePerpendicular

    sec2θ×cosecθ

    Hence, the correct option is (A).

  • Question 6
    1 / -0
    In a right triangle MNO, right angled at N, sin M =  What is the value of cos M?
    Solution

    sin M =442 = PerpendicularHypotenuse

    Hypotenuse2=Perpendicular2+Base2

    MN = 4, MO = 42, NO = ?

    NO2=MO2-MN2

    422-42

    NO2= 32 - 16 = 16

    NO=16 = 4

    cos M =BaseHypotenuse=NOMO

    =442=12

    Hence, the correct option is (A).

  • Question 7
    1 / -0
    Which of the following is always true if sec A = cosec B?
    Solution

    By identity, Sec A = Cosec (90° - A)

    Sec A = Sec (90° - B)

    Sec will be eliminated

    = A = 90° - B

    =A+B=90°

    Hence, the correct option is (C).

  • Question 8
    1 / -0
    If sec 45°cot 60°=3x2, then what is the value of x?
    Solution

    Squaring sec 45οcot 60ο=3x2 we get,

    sec245οcot260ο=3x22

    2132=3x22

    213×3x2

    21×31=3x2

    x=2×2×33=4

    Hence, the correct option is (A).

  • Question 9
    1 / -0

    What is the value of sin 75°cos 15°+cosec 60°sec 30°-1?

    Solution

    sin 75οcos 15ο÷cosec 60οsec 30ο-1

    =sin90°-15°cos 15°÷2323-1

    =cos 15°cos 15°÷1-1

    =1÷1-1

    =0

    Hence, the correct option is (D).

  • Question 10
    1 / -0

    If cot θ=78, evaluate  (1 + sin θ)(1  sin θ)(1+cos θ)(1-cos θ).

    Solution

    Let us assume an ABC in which B = 90° and C = θ

    Given:

    cot θ = BCAB = 78

    Let BC = 7k and AB = 8k, where k is a positive real number

    According to Pythagoras theorem in ABC we get.

    AC2 = AB2+BC2

    AC2 = (8k)2+(7k)2

    AC2 = 64k2+49k2

    AC2 = 113k2

    AC = 113 k

    According to the sine and cos function ratios, it is written as:

    sin θ = ABAC= Opposite SideHypotenuse = 8k113k = 8113 and

    cos θ = Adjacent SideHypotenuse= BCAC = 7k113k = 7113

    Now apply the values of sin function and cos function:

    1+sinθ1-sinθ1+cosθ1-cosθ=1-sin2θ1-cos2θ

    =1-811321-71132=4964

    Hence, the correct option is (C).

  • Question 11
    1 / -0
    If m=1+tan2θ and n=1+cot2θ, then mn equals:
    Solution

    m = 1 + tan2θ ...(1)

     n = 1 + cot2θ ...(2)

    mn=1+tan2θ1+cot2θ

    1+tan2θ11+1tan2θ

    1+tan2θtan2θ+1tan2θ

    1+tan2θtan2θ1+tan2θ

    mn=tan2θ

    from (1)

    tan2θ=m-1

    ∴ mn=m-1

    Hence, the correct option is (B).

  • Question 12
    1 / -0
    Solve the number of solution of the equation: sin(x) + cos(x) = 1 on the interval 0°  x < 360°
    Solution

    Let us take 45ο

    square the equation and solve it 

    sinx+cosx2=12

    sin2x+cos2x+2 sinx cosx

    122+122+2×12×12

    12+12+2×12

    1+1+22=42 = 2

    Hence, the correct option is (A).

  • Question 13
    1 / -0
    What is the value of sin 45°. cos 90°. tan 60°. cos 75°. cot 30°?
    Solution

    From the basic formula we can get the value of the following:

    sin 45ο = 12

    cos 90ο = 0

    tan 60ο = 3

    cos 75ο = 6-24

    cot 30ο =3 

     sin45ο·cos 90ο·tan 60ο·cos 75ο·cot 30ο

    12×0×3×6-24×3

    =0

    Hence, the correct option is (A).

  • Question 14
    1 / -0
    If x + y = cosec 45° and 2x = sin 30°, what is the value of y?
    Solution

    sin 30ο = 12

    2x = sin30°

    2x=12

    x=14

    put the value of x in x+y=cosec 45ο

    14+y=2

    y =2-14

    Hence, the correct option is (B).

  • Question 15
    1 / -0

    In a right angle triangle, ABC right angled at B, cos A=15. Find the value of sin A.

    Solution

    cos A=15=BaseHypotenuse

    Hypotenuse2=Perpendicular2+Base2

    Perpendicular2=Hypotenuse2-Base2

    52 - 12

    = 5 - 1 = 4

    Perpendicular=4=2

    sin A=PerpendicularHypotenuse=25

    Hence, the correct option is (B).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now