Self Studies

Introduction to Trigonometry Test - 18

Result Self Studies

Introduction to Trigonometry Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If sinθ = 513 then cosθ =?

    Solution

    Let AB=5k and AC=13k


    Using Pythagorean theorem:

    AB2+BC2=AC2

    BC=13k2-5k2=169k2-25k2

    BC=144k2=12k

    cos θ=BCAC=12k13k=1213

    Hence, the correct option is (D).

  • Question 2
    1 / -0

    In right triangle ABC, right-angled at C, if tan A = 1, then the value of 2 sin A cos A is:

    Solution

    In ABC, ABC=90°

    tan A=BCAB

    Since tan A=1 (Given) BCAB=1

    BC=AB

    Let AB=BC=k, where k is a positive number.

    Now, AC2=AB2+BC2

    AC=AB2+BC2=k2+k2

    AC=k2

    sin A=BCAC=kk2=12

    cos A=ABAC=kk2=12

    2 sin A cos A=21212=1

    2 sin A cos A=1

    Hence, the correct option is (D).

  • Question 3
    1 / -0

    Which of the following is true:

    Solution

    =cos A sec A

    =cos A×1cos A

    =1×1

    =1

    Therefore, cos A sec A=1 is true.

    Hence, the correct option is (B).

  • Question 4
    1 / -0
    If tan θ=2021, then cos θ-sin θcos θ+sin θ=?
    Solution

    Given, tan θ=2021

    Dividing all terms of cos θ-sinθcos θ+sin θ by cos θ,

    =1-tan θ1+tan θ=1-20211+2021=21-2021+20=141

    Hence, the correct option is (D).

  • Question 5
    1 / -0

    If 5 tan α=4, then the value of 5 sin α-3 cos α5 sin α+2 cos α is:

    Solution

    Given, 5 tan α=4

    Dividing all terms of 5 sin α-3 cos α5 sin α+2 cos α by cos α

    =5 tan α-35 tan α+2=4-34+2=16

    Hence, the correct option is (D).

  • Question 6
    1 / -0
    If tan θ=ab, then cos θ+sinθcos θ-sinθ=?
    Solution

    Given, tan θ=ab

    Dividing all terms of cos θ+sin θcos θ-sin θ by cos θ,

    =1+tan θ1-tan θ

    =1+ab1-ab

    =b+ab-a

    Hence, the correct option is (B).

  • Question 7
    1 / -0

    If tan θ=2021, then 1-sin θ+cos θ1+cos θ+sin θ=?


    Solution

    Tan θ=opposite sideefficient side=2021


    Let x be the hypotenuse by applying Pythagoras we get

    AC2+AB2+BC2

    x2=202+212

    x2=400+441

    x2=841

    x=29

    sin θ=ABAC=2029

    cos θ=BCAC=2129

    Substitute sin θ, cos θ in the equation we get

    =1-sin θ+cos θ1+sin θ+cos θ

    1-2029+21291+2029+2129=29-20+212929+20+2129=3070=37

    Hence, the correct option is (B).

  • Question 8
    1 / -0
    If 4 tan θ=3, then 4 sin θ-cos θ4 sin θ+cos θ is equal to:
    Solution

    Given, 4 tan θ=3

    Dividing all terms of 4 sin θ-cos θ4 sin θ+cos θ by cos θ,

    =4 tan θ-14 tan θ+1=3-13+1=24=12

    Hence, the correct option is (D).

  • Question 9
    1 / -0
    If cot θ=78, then the value of 1+sin θ1-sin θ1+cos θ1-cos θ is:
    Solution

    Given, cot θ=78

    Now, 1+sin θ1-sin θ1+cos θ1-cos θ

    =1-sin2θ1-cos2θ

    =782

    =4964

    Hence, the correct option is (C).

  • Question 10
    1 / -0
    If sin A + sin2A=1, then cos2A+cos4A=?
    Solution

    We have

    sin A+sin2A=1

    sin A=1-sin2A

    sin A=cos2A...(i)

    Squaring both sides

    sin2A=cos4A...(ii)

    From equation (i) and (ii), we have

    cos2A+cos4A=sinA+sin2A=1

    Hence, the correct option is (A).

  • Question 11
    1 / -0
    The value of the expression cosec75°+θ-sec15°-θ-tan55°+θ+cot35°-θ is:
    Solution

    cosec75°+θ-sec15°-θ-tan55°+θ+cot35°-θ

    =cosec75°+θ-cosec90°-15°-θ-tan55°+θ+tan90°-35°-θ

    =cosec75°+θ-cosec75°+θ-tan55°+θ+tan55°+θ

    =0

    Hence, the correct option is (C).

  • Question 12
    1 / -0

    In ΔABC, if B = 90° and cot A = 1, then the value of cos C sin A  cos A sin C is:

    Solution


    tan 90°=1=ABBC

    AB=BC

    Let AB=BC=R

    Applying Pythagoras theorem

    AC2=AB2+BC2

    AC=AB2+BC2

    AC=k2+k2=k2+k2

    AC=2k2=2k

    cos C sin A-cos A sin C=k2k×k2k-k2k×k2k

    =12-12=0

    Hence, the correct option is (A).

  • Question 13
    1 / -0
    If cos A=45, then tan A=?
    Solution

    From trigonometric identity

    1+tan2A=sec2A

    sec2A-1=tan2A

    1cos2A-1=tan2A

    542-1=tan2A

    916=tan2A

    tan A=34

    Hence, the correct option is (B).

  • Question 14
    1 / -0
    Given that: sin A=ab, then cos A=?
    Solution

    We have

    Given, sin A = ab

    As, sin A=PerpendicularHypotenus

    Let the complete ratio be x

    Perpendicular =ax

    Hypotenuse =bx

    Now,

    Base2+Perpendicular2=Hypotenus2

    Base2+ax2=bx2

    Base2=bx2-ax2

    Base=xb2-a2

    cos A=BaseHypotenus=xb2-a2bx=b2-a2b

    Hence, the correct option is (B).

  • Question 15
    1 / -0

    If sinA = 1213, then tan A =?

    Solution

    Given,

    sin A=1213

    cos A=1-sin2A

    =1-12132

    =1-144169

    =169-144169

    =25169

    5132

    cos A=513

    And,

    tan A=sin Acos A

    =1213513

    tan A=125

    Hence, the correct option is (A).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now