Self Studies

Introduction to Trigonometry Test - 31

Result Self Studies

Introduction to Trigonometry Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\sin^2 60^0 + \tan 45^0 - \text{cosec}^2 45^0$$ is
    Solution
    $$\sin^2 60^0 + \tan 45^0 - \text{cosec}^2 45^0$$
    $$=\left(\dfrac{\sqrt 3}{2}\right)^2+1-(\sqrt 2)^2=\dfrac34-1=\dfrac{-1}{4}$$
  • Question 2
    1 / -0
    The value of $$ 4(\sin^4 30^0 + \cos^4 60^0)-3 (\cos^2 45^0 \sin^2 90^0)$$ is
    Solution
    $$4(\sin^430^0+\cos^460^0)-3\sin^290^0\cos^2(45^0)$$

    $$=4(\dfrac{1}{16}+\dfrac{1}{16})-3(1)(\dfrac{1}{2})$$

    $$=\dfrac{8}{16}-\dfrac{3}{2}$$

    $$=\dfrac{1}{2}-\dfrac{3}{2}$$

    $$=-1$$
    Hence answer is $$-1$$
  • Question 3
    1 / -0
    If $$a \cos\theta-b \sin\theta=c$$, then $$a \sin\theta+b\cos\theta$$ equals-
    Solution
    $$ a\cos\theta - b\sin\theta = c$$

    Let,$$a\sin\theta + b\cos\theta = x$$

    Squaring and adding we get
    $$a^2\cos^2 \theta+b^2 \sin^2 \theta-2ab\sin \theta \cos \theta+a^2 \sin^2 \theta+b^2 \cos^2 \theta+2ab\sin \theta \cos \theta=c^2+x^2$$

    $$\Rightarrow a^2 + b^2 -c^2 = x^2 $$

    $$x=\pm \sqrt{a^2+b^2-c^2}$$

    Option D is the correct option
  • Question 4
    1 / -0
    The value of $$\sec$$ $$(90^0 - \theta) \sin \theta$$ is


    Solution
    $$\sec (90^0-\theta)\sin\theta$$
    $$=\csc\theta\:\sin\theta$$
    $$=\dfrac{1}{\sin\theta}\sin\theta$$
    $$=1$$
    Hence answer is D
  • Question 5
    1 / -0
    The value of $$\sin^2 60^0.\cos^2 30^0 + \tan 45^0. \cos 60^0 \sin 30^0$$ is
    Solution

    $$\sin ^260^0\cos ^230^0+\tan45^0\cos 60^0\sin 30^0$$

    $$=\sin ^260^0\sin ^260^0+(1)\cos ^260^0$$

    $$=\sin ^460^0+\cos ^260^0$$

    Substituting the values of $$\sin 60^0$$ and $$\cos 60^0$$ we get

    $$(\dfrac{\sqrt{3}}{2})\:^4+(\dfrac{1}{2})\:^2$$

    $$=\dfrac{9}{16}+\dfrac{1}{4}$$

    $$=\dfrac{13}{16}$$

    Hence answer is A

  • Question 6
    1 / -0
    The value of $$\sin^2q. \cos^2q (\sec^2q+\text cosec^2q)$$ is
    Solution
    Given: $$\sin^2q \cos^2q (\sec^2q+\text{cosec}^2q)$$
    $$=\sin^2q \cos^2q (\dfrac {1}{\cos^2q}+\cfrac {1}{\sin^2q})$$

    $$=\sin^2q \cos^2q(\dfrac{\sin^2q+\cos^2q}{\sin^2q\cos^2q})$$

    $$=\sin^2q+\cos^2q=1$$
  • Question 7
    1 / -0
    The value of $$4 \cos^2 60^0 + 4 \tan^2 45^0 - \csc^2 30^0$$ is
    Solution
    $$4\cos^260^0+4\tan^245^0-\csc^230^0$$
    $$=4(\dfrac{1}{2})\:^2+4(1)-2^2$$
    $$=1+4-4$$
    $$=1$$
    Hence answer is C
  • Question 8
    1 / -0
    In the given figure, the side $$PQ$$ (in cm) is

    Solution
    In the given triangle
    $$AB=BP$$
    Hence, $$\triangle ABP$$ is an isosceles triangle
    Therefore, $$\angle PAB=\angle APB$$
    Hence, $$\angle BPQ=90^0-(\angle PAB+\angle APB)$$
    $$=(90^0-15^0-15^0)=60^0$$
    Consider $$\triangle BPQ$$
    $$\cos60^0=\dfrac{1}{2}=\dfrac{PQ}{BP}$$
    $$=\dfrac{PQ}{100}$$
    Hence, $$PQ=50$$ cm
    The answer is option B.
  • Question 9
    1 / -0
    The value of $$\sin^6q+\cos^6q+3 \sin^2q \cos^2q$$ is-
    Solution
    $$\sin^6q+\cos^6q+3 \sin^2q \cos^2q$$
    $$\Rightarrow (\sin^2q+\cos^2q)(\sin^4q+\cos^4q-\sin^2q \cos^2q)+3 \sin^2q \cos^2q$$
    $$\Rightarrow \sin^4q+\cos^4q+2\sin^2q \cos^2q$$
    $$\Rightarrow (\sin^2q+\cos^2q)^2=1$$.
  • Question 10
    1 / -0
    The value of $$\sin$$ $$45^0 \cos 45^0 (\tan 45^0 + \cot 45^0)$$ is
    Solution
    $$\sin 45^0 \cos 45^0(\tan 45^0+\ cot 45^0)$$
    $$=(\dfrac{1}{\sqrt{2}})(\dfrac{1}{\sqrt{2}})(1+1)$$
    $$=\dfrac{1}{2}(2)$$
    $$=1$$
    Hence answer is B
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now