Self Studies

Introduction to Trigonometry Test - 42

Result Self Studies

Introduction to Trigonometry Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of cot15cot16cot17.....cot73cot74cot75\displaystyle \cot 15^{\circ}\cot 16^{\circ}\cot 17^{\circ}.....\cot 73^{\circ}\cot 74^{\circ}\cot 75^{\circ} is
    Solution
    cot15°cot16°cot17°.........cot73°cot74°cot75°\cot { 15° } \cot { 16° } \cot { 17° } .........\cot { 73° } \cot { 74° } \cot { 75° }
    =cot(90°75°) cot(90°74°) cot(90°73°) ......cot45o......cot73°cot74°cot75°=\cot { \left( 90°-75° \right)  } \cot { \left( 90°-74° \right)  } \cot { \left( 90°-73° \right)  } ......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
    =tan75°tan74°tan73°.......cot45o......cot73°cot74°cot75°=\tan { 75° } \tan { 74° } \tan { 73° } .......\cot45^o......\cot { 73° } \cot { 74° } \cot { 75° }
    =(tan75°.cot75o)(tan74°.cot74o)(tan73°.cot73o).......cot45o=(\tan { 75° }.\cot75^o) (\tan { 74° }.\cot74^o)( \tan { 73° }.\cot73^o) .......\cot45^o
    =1×1×1×.........×1=1\times1\times1\times.........\times1
    =1=1
    Hence, the answer is 1.1.
  • Question 2
    1 / -0
    Evaluate : 3cos53cosec37(cos229+cos261)3tan245\displaystyle \frac{3\cos 53^{\circ} \text{cosec}37^{\circ}}{(\cos ^{2}29^{\circ}+\cos ^{2}61^{\circ})}-3\tan ^{2}45^{\circ}
    Solution
    3cos53 cosec37(cos229+cos261)3tan245\displaystyle \frac{3\cos 53^{\circ} cosec 37^{\circ}}{(\cos ^{2}29^{\circ}+\cos ^{2}61^{\circ})}-3\tan ^{2}45^{\circ}

    3cos53cosec (9053)(cos229+cos2(90 29))3tan245\displaystyle \frac{3\cos 53^{\circ} \text{cosec }(90 - 53)^{\circ}}{(\cos ^{2}29^{\circ}+\cos ^{2}(90 - 29)^{\circ})}-3\tan ^{2}45^{\circ}

    3cos53sec53(cos229+sin229)3tan245\displaystyle \frac{3\cos 53^{\circ} \sec 53^{\circ}}{(\cos ^{2}29^{\circ}+\sin ^{2}29^{\circ})}-3\tan ^{2}45^{\circ}

    313(1)2\displaystyle \frac{3}{1}-3(1)^2

    = 00
  • Question 3
    1 / -0
    Evaluate: tan7tan23tan60tan67tan83\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
    Solution
    tan7tan23tan60tan67tan83\displaystyle \tan 7^{\circ}\tan 23^{\circ}\tan 60^{\circ}\tan 67{^{\circ}}\tan 83^{\circ}
    =tan7.tan23.3.tan(9023).tan(907)\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\tan (90^{\circ}-23^{\circ}).\tan (90^{\circ}-7^{\circ})                       [tan(90θ)=cotθ ]\displaystyle \left [ \because \tan (90^{\circ}-\theta )=\cot \theta  \right ]
    ==tan7.tan23.3.cot23.cot7\displaystyle =\tan 7^{\circ}.\tan 23^{\circ}.\sqrt{3}.\cot 23^{\circ}.\cot 7^{\circ}
    tan7.cot7tan23.cot23.3\displaystyle \tan 7^{\circ}.\cot 7^{\circ}\tan 23^{\circ}.\cot 23^{\circ}.\sqrt{3}                         (tanθ.cotθ=1)\displaystyle (\because \tan \theta .\cot \theta =1)
    =1×1×3=3\displaystyle =1\times 1\times \sqrt{3}=\sqrt{3}
  • Question 4
    1 / -0
    Let S = sin230+sin245+sin260\displaystyle \sin ^{2}30^{\circ}+\sin ^{2}45^{\circ}+\sin ^{2}60^{\circ} and 
    P = cosec245.sec230.sin390.cos60\displaystyle \text{cosec}^{2}45^{\circ}.\sec ^{2}30^{\circ}.\sin ^{3}90^{\circ}.\cos 60^{\circ}, then the correct statement is
    Solution
    S=sin230+sin245+sin260S = \displaystyle \sin ^{2}30^{\circ}+\sin ^{2}45^{\circ}+\sin ^{2}60^{\circ} and P=cosec245.sec230.sin390.cos60P = \displaystyle cosec^{2}45^{\circ}.\sec ^{2}30^{\circ}.\sin ^{3}90^{\circ}.\cos 60^{\circ}

    Now, S=14+12+34=1+2+34=32S = \dfrac{1}{4} + \dfrac{1}{2} + \dfrac{3}{4} = \dfrac{1 + 2 + 3}{4} = \dfrac32

    P=(2)2(23)21312=43P = (\sqrt 2)^2 \cdot \left(\dfrac{2}{\sqrt3}\right)^2 \cdot 1^3 \cdot \dfrac{1}{2} = \dfrac{4}{3}

    Hence, SP=3243=2SP = \dfrac{3}{2} \cdot \dfrac{4}{3} = 2
  • Question 5
    1 / -0
    Evaluate: sinθ cosθ sin(90oθ )  cos(90oθ )  +cosθ sinθ cos(90oθ )  sin(90oθ )  +sin227o+sin263o cos240o+cos250o \cfrac { \sin { \theta  } \cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  }  }{ \cos { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \cos { \theta  } \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  }  }{ \sin { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \sin ^{ 2 }{ { 27 }^{ o } } +\sin ^{ 2 }{ { 63 }^{ o } }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\cos ^{ 2 }{ { 50 }^{ o } }  }
    Solution
    sinθ cosθ sin(90oθ )  cos(90oθ )  =sinθ cosθ cosθ  sinθ  ....(i)\cfrac { \sin { \theta  } \cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  }  }{ \cos { \left( { 90 }^{ o }-\theta  \right)  }  } =\cfrac { \sin { \theta  } \cos { \theta  } \cos { \theta  }  }{ \sin { \theta  }  } ....(i)
    cosθ sinθ cos(90oθ )  sin(90oθ )  =cosθ sinθ sinθ  cosθ  ......(ii)\cfrac { \cos { \theta  } \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  }  }{ \sin { \left( { 90 }^{ o }-\theta  \right)  }  } =\cfrac { \cos { \theta  } \sin { \theta  } \sin { \theta  }  }{ \cos { \theta  }  } ......(ii)\quad
    sin227o+sin263o cos240o+cos250o \cfrac { \sin ^{ 2 }{ { 27 }^{ o } } +\sin ^{ 2 }{ { 63 }^{ o } }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\cos ^{ 2 }{ { 50 }^{ o } }  }
    =sin227o+sin2(90o27o)  cos240o+cos2(90o40o)  =\cfrac { \sin ^{ 2 }{ { 27 }^{ o } } +\sin ^{ 2 }{ \left( { 90 }^{ o }-{ 27 }^{ o } \right)  }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\cos ^{ 2 }{ \left( { 90 }^{ o }-{ 40 }^{ o } \right)  }  }
    =sin227ocos227o  cos240o+sin240o =11=\cfrac { \sin ^{ 2 }{ { 27 }^{ o }\cos ^{ 2 }{ { 27 }^{ o } }  }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\sin ^{ 2 }{ { 40 }^{ o } }  } =\cfrac { 1 }{ 1 }
    Using (i),(ii),(iii)(i), (ii), (iii) we get
    sinθ sinθ +cosθ cosθ +1\sin { \theta  } \sin { \theta  } +\cos { \theta  } \cos { \theta  } +1
    sin2θ +cos2θ +1=1+1=2\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +1=1+1=2
  • Question 6
    1 / -0
    If cos(α+β)=0\cos (\alpha+\beta)=0, then sin(αβ)\sin (\alpha-\beta), can be reduced to
    Solution
    Step 1 : Use the triginometric identities for angle transformation\textbf{Step 1 : Use the triginometric identities for angle transformation}
                     Given ,\text{Given ,} cos(α+β)=0\cos(\alpha +\beta )=0 
                      cos(α+β)=cos90[cos90=0]\Rightarrow \cos (\alpha +\beta )=\cos90\quad \quad \quad \quad \boldsymbol{[\because \cos 90^\circ=0]} 
                     α+β=90\Rightarrow \alpha +\beta =90
                     α=90β\Rightarrow\alpha =90-\beta 
                     $$\therefore\ sin (\alpha -\beta )\\ =\sin(90-2\beta )=\cos2\beta\ \ \  \quad \quad \quad \boldsymbol{[\because \sin(90-\theta )=\cos\theta]} $$

    Hence , option(B) is the correct answer\textbf{Hence , option(B) is the correct answer}
  • Question 7
    1 / -0
    Evaluate: sin(50o+θ ) cos(40oθ ) +tan1otan10otan20otan70otan80otan89o\sin { \left( { 50 }^{ o }+\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
    Solution
    sin(50o+θ ) cos(40oθ ) +tan1otan10otan20otan70otan80otan89o\sin { \left( { 50 }^{ o }+\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}
    =sin[90o40o+θ ] cos(40oθ ) +(tan1otan89o)(tan10otan80o)(tan20otan70o)=\sin { \left[ { 90 }^{ o }-{ 40 }^{ o }+\theta  \right]  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +(\tan { { 1 }^{ o } } \tan {{89}^{o}})(\tan{{10}^{o}}\tan{{80}^{o}})(\tan {{20}^{o}}\tan {{70}^{o}})
    =sin[90o(40oθ)]cos(40oθ)+tan(90o89o)tan89otan(90o80o)tan80otan(90o70o)tan70o=\sin {\left[{90}^{o}-({40}^{o}-\theta) \right]} -\cos {\left({40}^{o}-\theta \right)} +\tan {({90}^{o}} -{ 89 }^{ o })\tan { { 89 }^{ o } } \tan { { (90 }^{ o } } -{ 80 }^{ o })\tan { { 80}^{ o } } \tan { { (90 }^{ o } } -{ 70 }^{ o })\tan { { 70 }^{ o } }
    =cos(40oθ ) cos(40oθ ) +cot89otan89ocot80otan80ocot70otan70o=\cos { \left( { 40 }^{ o }-\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\cot { { 89 }^{ o } } \tan { { 89 }^{ o } } \cot { { 80 }^{ o } } \tan { { 80 }^{ o } } \cot { { 70 }^{ o } } \tan { { 70 }^{ o } }
    =0+1=0+1        cotθtanθ=1\because \cot {\theta} \tan {\theta}=1]
    =1=1 
    Hence, sin(50o+θ ) cos(40oθ ) +tan1otan10otan20otan70otan80otan89o=1\sin { \left( { 50 }^{ o }+\theta  \right)  } -\cos { \left( { 40 }^{ o }-\theta  \right)  } +\tan {1}^{o} \tan {10}^{o} \tan {20}^{o} \tan {70}^{o} \tan {80}^{o} \tan {89}^{o}=1
  • Question 8
    1 / -0
    The value of cos4θ+sin4θ+2cos2θsin2θ\displaystyle \cos ^{4}\theta +\sin ^{4}\theta +2\cos ^{2}\theta \sin ^{2}\theta when θ=60\displaystyle \theta=60^{\circ} is
    Solution
    cos4θ+sin4θ+2cos2θsin2θ\displaystyle \cos ^{4}\theta +\sin ^{4}\theta +2\cos ^{2}\theta \sin ^{2}\theta
    (cos2θ+sin2θ)2\displaystyle (\cos ^{2}\theta +\sin ^{2}\theta)^2
    = (cos2600+sin2600)2\displaystyle (\cos ^{2} 60^0 +\sin ^{2} 60^0)^2
    = (14+34)2\displaystyle (\frac{1}{4} +\frac{3}{4})^2
    = 12\displaystyle 1^2
    = 11
  • Question 9
    1 / -0
    Evaluate: cos220o+cos270o sec250ocot240o +2cosec258o2cot58otan32o4tan13otan37otan45otan53otan77o\cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ \sec ^{ 2 }{ { 50 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } }  } +2\text{cosec} ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } }
    Solution
    cos220o+cos270o sec250o+cot240o +2csc258o2cot58otan32o4tan13otan37otan45otan53otan77o\cfrac { \cos ^{ 2 }{ { 20 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ \sec ^{ 2 }{ { 50 }^{ o } } +\cot ^{ 2 }{ { 40 }^{ o } }  } +2\csc ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { { 32 }^{ o } } -4\tan { { 13 }^{ o } } \tan { { 37 }^{ o } } \tan { { 45 }^{ o } } \tan { { 53 }^{ o } } \tan { { 77 }^{ o } }
    =cos2(90o70o)+cos270o sec2(90o40o)+cot240o =\cfrac { \cos ^{ 2 }{ { ({ 90 }^{ o }-70 }^{ o }) } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ \sec ^{ 2 }{ { ({ 90 }^{ o }-40 }^{ o } } )+\cot ^{ 2 }{ { 40 }^{ o } }  }
     +2csc258o2cot58otan(90o58o)4(tan13otan77o)(tan37otan53o)tan45o+2\csc ^{ 2 }{ { 58 }^{ o } } -2\cot { { 58 }^{ o } } \tan { ({ 90 }^{ o }-58^{ o }) } -4(\tan { { 13 }^{ o } } \tan { { 77 }^{ o } } )(\tan { { 37 }^{ o } } \tan { { 53 }^{ o } } )\tan { { 45 }^{ o } }
    =sin270o+cos270o cosec240ocot240o +2(csc258ocot258o)4[tan(90o77o)tan77o][tan(90o53o)tan53o][1]=\cfrac { \sin ^{ 2 }{ { 70 }^{ o } } +\cos ^{ 2 }{ { 70 }^{ o } }  }{ co\sec ^{ 2 }{ { 40 }^{ o } } -\cot ^{ 2 }{ { 40 }^{ o } }  } +2(\csc ^{ 2 }{ { 58 }^{ o } } -\cot ^{ 2 }{ { 58 }^{ o } }) -4[\tan { ({ 90 }^{ o }-77^{ o }) } \tan { { 77 }^{ o } } ][\tan { ({ 90 }^{ o }-53^{ o }) } \tan { { 53 }^{ o } } ][1]
    =11+24=\cfrac{1}{1}+2-4
    =1=-1
  • Question 10
    1 / -0
    Evaluate:
    sec254ocot236o cosec257otan233o +2sin238osec252osin245o+23 tan17otan60otan73o\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } }  }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 }  } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } }
    Solution
    sec254ocot236o cosec257otan233o +2sin238osec252osin245o+23 tan17otan60otan73o\cfrac { \sec ^{ 2 }{ { 54 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } }  }{ co\sec ^{ 2 }{ { 57 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { 52 }^{ o } } -\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 }  } \tan { { 17 }^{ o } } \tan { { 60 }^{ o } } \tan { { 73 }^{ o } }

    sec2(90o36o)cot236o cosec2(90o33o)tan233o +2sin238osec2(90o38o)sin245o+23 tan(90o73o) tan73otan60o\Rightarrow \cfrac { \sec ^{ 2 }{ { (90 }^{ o }- } { 36 }^{ o })-\cot ^{ 2 }{ { 36 }^{ o } }  }{ co\sec ^{ 2 }{ { (90 }^{ o }- } { 33 }^{ o })-\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } \sec ^{ 2 }{ { (90 }^{ o }- } { 38 }^{ o })-\sin ^{ 2 }{ { 45 }^{ o } } +\cfrac { 2 }{ \sqrt { 3 }  } \tan { \left( { 90 }^{ o }-{ 73 }^{ o } \right)  } \tan { { 73 }^{ o } } \tan { { 60 }^{ o } }


    cosec236ocot236o sec233otan233o +2sin238ocosec238o(12  ) 2+23 cot73otan73o×3\Rightarrow \cfrac { co\sec ^{ 2 }{ { 36 }^{ o } } -\cot ^{ 2 }{ { 36 }^{ o } }  }{ \sec ^{ 2 }{ { 33 }^{ o } } -\tan ^{ 2 }{ { 33 }^{ o } }  } +2\sin ^{ 2 }{ { 38 }^{ o } } co\sec ^{ 2 }{ { 38 }^{ o } } -{ \left( \cfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+\cfrac { 2 }{ \sqrt { 3 }  } \cot { { 73 }^{ o } } \tan { { 73 }^{ o } } \times \sqrt { 3 }


    11+2sin238o×1sin238o 12+23 ×1tan73o ×tan73o×3\Rightarrow \cfrac { 1 }{ 1 } +2\sin ^{ 2 }{ { 38 }^{ o } } \times \cfrac { 1 }{ \sin ^{ 2 }{ { 38 }^{ o } }  } -\cfrac { 1 }{ 2 } +\cfrac { 2 }{ \sqrt { 3 }  } \times \cfrac { 1 }{ \tan { { 73 }^{ o } }  } \times \tan { { 73 }^{ o } } \times \sqrt { 3 }


    [cosec20cot20=1,sec20tan20=1]\quad [\because \quad co\sec ^{ 2 }{ 0 } -\cot ^{ 2 }{ 0 } =1,\sec ^{ 2 }{ 0 } -\tan ^{ 2 }{ 0 } =1]


    1+212+2=512\Rightarrow 1+2-\cfrac{1}{2}+2=5-\cfrac{1}{2}


    92\Rightarrow \cfrac{9}{2}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now