Self Studies

Introduction to Trigonometry Test - 47

Result Self Studies

Introduction to Trigonometry Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of sin3α(1+cotα )+cos3α(1+tanα )\displaystyle \sin^{3} \alpha \left ( 1+\cot \alpha  \right )+\cos ^{3}\alpha \left ( 1+\tan \alpha  \right ) is equal to
    Solution
    Given expression 
    =sin3α(1+cosαsinα)+cos3α(1+sinαcosα)\displaystyle =\sin ^{3}\alpha \left ( 1+\frac{\cos \alpha }{\sin \alpha } \right )+\cos ^{3}\alpha \left ( 1+\frac{\sin \alpha }{\cos \alpha } \right )

    =sin2α(sinα+cosα )+cos2α\displaystyle =\sin ^{2}\alpha \left ( \sin \alpha +\cos \alpha  \right )+\cos ^{2}\alpha  (cosα+sinα )\displaystyle \left ( \cos \alpha +\sin \alpha  \right )

    =(cosα+sinα )(sin2α+cos2α )\displaystyle =\left ( \cos \alpha +\sin \alpha  \right )\left ( \sin ^{2}\alpha +\cos ^{2}\alpha  \right )

    =sinα+cosα\displaystyle =\sin \alpha +\cos \alpha
  • Question 2
    1 / -0
    The value of sin6θ+cos6θ+3cos2θsin2θ\displaystyle \sin ^{6}\theta +cos^{6}\theta+3\cos ^{2}\theta \sin ^{2}\theta is
    Solution
    sin6θ+cos6θ+3sin2θcos2θ\displaystyle \sin ^{6}\theta +\cos ^{6}\theta+3\sin ^{2}\theta \cos ^{2}\theta
    =sin6θ+cos6θ+3sin2θcos2θ\displaystyle =\sin ^{6}\theta +\cos ^{6}\theta +3\sin ^{2}\theta \cos ^{2}\theta
    =(sin2θ+cos2θ )3=1\displaystyle =\left ( \sin ^{2}\theta +\cos ^{2}\theta  \right )^{3}=1
  • Question 3
    1 / -0
    If 7sin2θ+3cos2θ=4\displaystyle 7\sin ^{2}\theta +3\cos ^{2}\theta =4 then the value of tanθ\displaystyle \tan \theta is
    Solution
    Dividing both sides of the equation by cos2θ\displaystyle \cos ^{2}\theta we have: 
    7tan2θ+3=4sec2θ =4(1+tan2θ )\displaystyle 7\tan ^{2}\theta +3=4\sec ^{2}\theta  =4\left ( 1+\tan ^{2}\theta  \right )
    7tan2θ+3=4+4tan2θ 7\tan^2 \theta +3= 4 + 4\tan^2 \theta
    3tan2θ=1\displaystyle \Rightarrow 3\tan ^{2}\theta=1 
     tanθ=±13\tan\theta= \pm \frac{1}{\sqrt{3}}
  • Question 4
    1 / -0
    If sin x1+cosx+sinx1cosx=4\displaystyle \frac{\sin x}{1+\cos x}+\frac{\sin x}{1-\cos x}=4 and 00x900\displaystyle 0^{0}\leq x\leq 90^{0}, then the value of xx is
    Solution
    Given expression
    sinx[(1cosx)+(1+cosx)1cos2x]=4\displaystyle \Rightarrow \sin x\left [ \frac{\left ( 1-\cos x \right )+\left ( 1+\cos x \right )}{1-\cos ^{2}x} \right ]=4
    sinx×2sin2x=4\displaystyle \Rightarrow \sin x\times \frac{2}{\sin ^{2}x}=4 or sinx=12\displaystyle \sin x=\frac{1}{2}
    x=300\displaystyle \Rightarrow x=30^{0}
  • Question 5
    1 / -0
    If x=rcosαcos β\displaystyle x=r\cos \alpha \cos  \beta and y=rcosαsinβy = r \cos \alpha \sin \beta, z=rz=r sinα\displaystyle \sin \alpha then x2+y2+z2\displaystyle x^{2}+y^{2}+z^{2} is equal to
    Solution
    x2+y2+z2=r2(cos2α )(cos2β+sin2β )+r2sin2α\displaystyle x^{2}+y^{2}+z^{2}=r^{2}\left ( \cos ^{2}\alpha  \right )\left ( \cos ^{2}\beta +\sin^2 \beta  \right )+r^{2}\sin ^{2}\alpha
    =r2cos2α+r2sin2α\displaystyle =r^{2}\cos ^{2}\alpha +r^{2}\sin ^{2}\alpha
    =r2(cos2α+sin2α )=r2\displaystyle =r^{2}\left ( \cos ^{2}\alpha +\sin ^{2}\alpha  \right )=r^{2}
  • Question 6
    1 / -0
    The value of sin2αcos2β+cos2αsin2β+sin2αsin2β+cos2αcos2β\displaystyle \sin ^{2}\alpha \cos ^{2}\beta +\cos ^{2}\alpha \sin ^{2}\beta +\sin ^{2}\alpha \sin ^{2}\beta +\cos ^{2}\alpha \cos ^{2}\beta is
    Solution
    (sin  2αcos2β+sin 2αsin 2β)+(cos2αsin 2β +cos2αcos2β)=sin 2α(cos2β+sin 2β)+cos2α(cos2β+sin 2β)=sin 2α+cos2α=1\Rightarrow (\sin   ^2\alpha \cos^2\beta+\sin  ^2\alpha \sin  ^2\beta)+(\displaystyle \cos ^{2}\alpha \sin  ^{2}\beta  +\cos ^{2}\alpha \cos ^{2}\beta)\\=\sin  ^2\alpha(cos^2\beta+\sin  ^2\beta)+cos^2\alpha(cos^2\beta+\sin  ^2\beta)\\=\sin  ^2\alpha+cos^2\alpha=1

    Therefore, Answer is 11
  • Question 7
    1 / -0
    The value of  sin260.cos230+tan45.cos60sin30   \displaystyle  \sin ^{2}60^{\circ}.\cos ^{2}30^{\circ}+\tan 45^{\circ}.\cos 60^{\circ}\sin 30^{\circ}     is 
    Solution
     sin260.cos230+tan45.cos60sin30    \displaystyle  \sin ^{2}60^{\circ}.\cos ^{2}30^{\circ}+\tan 45^{\circ}.\cos 60^{\circ}\sin 30^{\circ}     
    =34×34+1×12×12=916+14=1316  \displaystyle =\frac{3}{4}\times \frac{3}{4}+1\times \frac{1}{2}\times \frac{1}{2}=\frac{9}{16}+\frac{1}{4}=\frac{13}{16}   
  • Question 8
    1 / -0
    If sinθ+cosecθ=2\displaystyle \sin \theta +co\sec \theta =2, then sinnθ+cosecnθ\displaystyle \sin^n\theta +co\sec ^{n}\theta is equal to
    Solution
    sinθ+cosecθ=2(sinθ1)2=0\displaystyle \sin \theta +co\sec \theta =2\Rightarrow \left ( \sin \theta -1 \right )^{2}=0
    sinθ=1\displaystyle \therefore \sin \theta =1
    sinnθcosecnθ=1+1=2\displaystyle \therefore \sin ^{n}\theta co\sec ^{n}\theta =1+1=2
  • Question 9
    1 / -0
    If  sinθ=12\displaystyle \sin \theta =\dfrac12 and  0<θ<90\displaystyle 0^{\circ}< \theta < 90^{\circ} then  cos2θ=\displaystyle \cos 2\theta = _____
    Solution
    Given, sinθ  =12 \sin { \theta  }  = \dfrac {1}{2}
    =>θ=300 => \theta = {30}^{0}     (Since, sin300  =12 \sin { {30}^{0}  }  = \dfrac {1}{2} and 00<θ<900) {0}^{0}<\theta< {90}^{0})

    So, cos2θ  =cos(600)=12 \cos { 2\theta  }  = \cos ({60}^{0}) = \dfrac {1}{2}
  • Question 10
    1 / -0
    If cosec(20+x)=sec(50+x)\displaystyle \sec \left ( 20^{\circ} + x \right )=\sec \left ( 50^{\circ}+x \right ) the value of x is 
    Solution
    We know that cosec(A)=sec(90A) cosec (A) = sec(90-A)

    This means, if 200+x=A {20}^{0} + x = A ,
    then 500+x=900(200+x) {50}^{0} + x = {90}^{0} - ({20}^{0} + x)
    =>500+x=900200x => {50}^{0} + x = {90}^{0} - {20}^{0}-x
    =>2x=200 => 2 x = {20}^{0}
    => x=100 =>  x = {10}^{0}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now