Self Studies

Introduction to Trigonometry Test - 47

Result Self Studies

Introduction to Trigonometry Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \sin^{3} \alpha \left ( 1+\cot \alpha  \right )+\cos ^{3}\alpha \left ( 1+\tan \alpha  \right )$$ is equal to
    Solution
    Given expression 
    $$\displaystyle =\sin ^{3}\alpha \left ( 1+\frac{\cos \alpha }{\sin \alpha } \right )+\cos ^{3}\alpha \left ( 1+\frac{\sin \alpha }{\cos \alpha } \right )$$

    $$\displaystyle =\sin ^{2}\alpha \left ( \sin \alpha +\cos \alpha  \right )+\cos ^{2}\alpha $$ $$\displaystyle \left ( \cos \alpha +\sin \alpha  \right )$$

    $$\displaystyle =\left ( \cos \alpha +\sin \alpha  \right )\left ( \sin ^{2}\alpha +\cos ^{2}\alpha  \right )$$

    $$\displaystyle =\sin \alpha +\cos \alpha $$
  • Question 2
    1 / -0
    The value of $$\displaystyle \sin ^{6}\theta +cos^{6}\theta+3\cos ^{2}\theta \sin ^{2}\theta $$ is
    Solution
    $$\displaystyle \sin ^{6}\theta +\cos ^{6}\theta+3\sin ^{2}\theta \cos ^{2}\theta $$
    $$\displaystyle =\sin ^{6}\theta +\cos ^{6}\theta +3\sin ^{2}\theta \cos ^{2}\theta $$
    $$\displaystyle =\left ( \sin ^{2}\theta +\cos ^{2}\theta  \right )^{3}=1$$
  • Question 3
    1 / -0
    If $$\displaystyle 7\sin ^{2}\theta +3\cos ^{2}\theta =4$$ then the value of $$\displaystyle \tan \theta $$ is
    Solution
    Dividing both sides of the equation by $$\displaystyle \cos ^{2}\theta $$ we have: 
    $$\displaystyle 7\tan ^{2}\theta +3=4\sec ^{2}\theta  =4\left ( 1+\tan ^{2}\theta  \right )$$
    $$ 7\tan^2 \theta +3= 4 + 4\tan^2 \theta $$
    $$\displaystyle \Rightarrow 3\tan ^{2}\theta=1$$ 
     $$\tan\theta= \pm \frac{1}{\sqrt{3}}$$
  • Question 4
    1 / -0
    If $$\displaystyle \frac{\sin x}{1+\cos x}+\frac{\sin x}{1-\cos x}=4$$ and $$\displaystyle 0^{0}\leq x\leq 90^{0}$$, then the value of $$x$$ is
    Solution
    Given expression
    $$\displaystyle \Rightarrow \sin x\left [ \frac{\left ( 1-\cos x \right )+\left ( 1+\cos x \right )}{1-\cos ^{2}x} \right ]=4$$
    $$\displaystyle \Rightarrow \sin x\times \frac{2}{\sin ^{2}x}=4$$ or $$\displaystyle \sin x=\frac{1}{2}$$
    $$\displaystyle \Rightarrow x=30^{0}$$
  • Question 5
    1 / -0
    If $$\displaystyle x=r\cos \alpha \cos  \beta $$ and $$y = r \cos \alpha \sin \beta$$, $$z=r$$ $$\displaystyle \sin \alpha $$ then $$\displaystyle x^{2}+y^{2}+z^{2}$$ is equal to
    Solution
    $$\displaystyle x^{2}+y^{2}+z^{2}=r^{2}\left ( \cos ^{2}\alpha  \right )\left ( \cos ^{2}\beta +\sin^2 \beta  \right )+r^{2}\sin ^{2}\alpha $$
    $$\displaystyle =r^{2}\cos ^{2}\alpha +r^{2}\sin ^{2}\alpha $$
    $$\displaystyle =r^{2}\left ( \cos ^{2}\alpha +\sin ^{2}\alpha  \right )=r^{2}$$
  • Question 6
    1 / -0
    The value of $$\displaystyle \sin ^{2}\alpha \cos ^{2}\beta +\cos ^{2}\alpha \sin ^{2}\beta +\sin ^{2}\alpha \sin ^{2}\beta +\cos ^{2}\alpha \cos ^{2}\beta $$ is
    Solution
    $$\Rightarrow (\sin   ^2\alpha \cos^2\beta+\sin  ^2\alpha \sin  ^2\beta)+(\displaystyle \cos ^{2}\alpha \sin  ^{2}\beta  +\cos ^{2}\alpha \cos ^{2}\beta)\\=\sin  ^2\alpha(cos^2\beta+\sin  ^2\beta)+cos^2\alpha(cos^2\beta+\sin  ^2\beta)\\=\sin  ^2\alpha+cos^2\alpha=1$$

    Therefore, Answer is $$1$$
  • Question 7
    1 / -0
    The value of $$ \displaystyle  \sin ^{2}60^{\circ}.\cos ^{2}30^{\circ}+\tan 45^{\circ}.\cos 60^{\circ}\sin 30^{\circ}     $$ is 
    Solution
    $$ \displaystyle  \sin ^{2}60^{\circ}.\cos ^{2}30^{\circ}+\tan 45^{\circ}.\cos 60^{\circ}\sin 30^{\circ}     $$
    $$ \displaystyle =\frac{3}{4}\times \frac{3}{4}+1\times \frac{1}{2}\times \frac{1}{2}=\frac{9}{16}+\frac{1}{4}=\frac{13}{16}  $$ 
  • Question 8
    1 / -0
    If $$\displaystyle \sin \theta +co\sec \theta =2$$, then $$\displaystyle \sin^n\theta +co\sec ^{n}\theta $$ is equal to
    Solution
    $$\displaystyle \sin \theta +co\sec \theta =2\Rightarrow \left ( \sin \theta -1 \right )^{2}=0$$
    $$\displaystyle \therefore \sin \theta =1$$
    $$\displaystyle \therefore \sin ^{n}\theta co\sec ^{n}\theta =1+1=2$$
  • Question 9
    1 / -0
    If  $$\displaystyle \sin \theta =\dfrac12$$ and  $$\displaystyle 0^{\circ}< \theta < 90^{\circ} $$ then  $$\displaystyle \cos 2\theta =$$ _____
    Solution
    Given, $$ \sin { \theta  }  = \dfrac {1}{2} $$
    $$ => \theta = {30}^{0} $$    (Since, $$ \sin { {30}^{0}  }  = \dfrac {1}{2} $$ and $$ {0}^{0}<\theta< {90}^{0}) $$

    So, $$ \cos { 2\theta  }  = \cos ({60}^{0}) = \dfrac {1}{2} $$
  • Question 10
    1 / -0
    If co$$\displaystyle \sec \left ( 20^{\circ} + x \right )=\sec \left ( 50^{\circ}+x \right ) $$ the value of x is 
    Solution
    We know that $$ cosec (A) = sec(90-A) $$

    This means, if $$ {20}^{0} + x = A $$,
    then $$ {50}^{0} + x = {90}^{0} - ({20}^{0} + x) $$
    $$ => {50}^{0} + x = {90}^{0} - {20}^{0}-x$$
    $$ => 2 x = {20}^{0}$$
    $$ =>  x = {10}^{0}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now