Self Studies

Introduction to Trigonometry Test - 48

Result Self Studies

Introduction to Trigonometry Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  $$\displaystyle \tan ^{2}\theta =\left ( 1-e^{2} \right )$$ then  $$\displaystyle \sec \theta +\tan ^{3}\theta\, \text{cosec}\, \theta $$ is equal to
    Solution
    $$\displaystyle \sec \theta +\tan ^{3}\theta \,\text{cosec}\, \theta $$
    $$\displaystyle = \frac{1}{\cos \theta }+\frac{\sin ^{2}\theta }{\cos ^{3}\theta }=\frac{\cos ^{2}\theta+\sin ^{2}\theta}{\cos ^{3}\theta}$$
    $$\displaystyle =\sec ^{3}\theta $$
    Now $$\displaystyle \tan ^{2}\theta =\left ( 1-e^{2} \right )\Rightarrow \sec ^{2}\theta = 2-e^{2}$$
    $$\displaystyle \therefore \sec ^{3}\theta =\left ( 2-e^{2} \right )^{\tfrac32}$$
  • Question 2
    1 / -0
     If $$\displaystyle a\cos ^{3}\theta +3a\cos \theta \sin ^{2}\theta =m$$ and $$\displaystyle a\sin ^{3}\theta +3a\cos ^{2}\theta \sin \theta=n$$ then $$\displaystyle \left ( m+n \right )^{\tfrac23}+\left ( m-n \right )^{\tfrac23}$$ is equal to
    Solution
    Given : $$\displaystyle a\cos ^{3}\theta +3a\cos \theta \sin ^{2}\theta =m$$.....(1) 
                 $$\displaystyle a\sin ^{3}\theta +3a\cos ^{2}\theta \sin \theta=n$$.....(2) 

    Adding equation (1) and (2) we get, 

    $$ \therefore \displaystyle m+n=a\left ( \cos ^{3}\theta +\sin ^{3}\theta  \right )+3a\cos \theta \sin \theta \left ( \cos \theta +\sin \theta  \right )=a\left ( \cos \theta +\sin \theta  \right )^{3}$$
    Similarly, we get
    $$\displaystyle m-n=a\left ( \cos \theta -\sin \theta  \right )^{3}$$

    $$=\displaystyle \left ( m+n \right )^{\tfrac23}+\left ( m-n \right )^{\tfrac23}$$

    $$=\displaystyle a^{{2}/{3}}[((cos \theta + sin \theta)^3)^{2/3}+((cos \theta-sin\theta)^3)^{2/3}]$$

    $$=\displaystyle a^{2/3}[(cos\theta+sin\theta)^2+(cos\theta-sin\theta)^2]$$

    After solving the above two brackets we get,

    $$=a^{\tfrac23}\left [ \left ( 2\left ( \cos ^{2}\theta +\sin ^{2}\theta  \right ) \right ) \right ]=2a^{\tfrac23}$$

    Hence option $$'C'$$ is the answer.
  • Question 3
    1 / -0
    The value of $$\displaystyle 4\left ( \sin ^{4}30^{\circ}+\cos ^{4}30^{\circ} \right )-3\left ( \cos ^{2}45^{\circ}+\sin ^{2}90^{\circ} \right ) $$  is:
    Solution
    Given: $$4\left( \sin ^{ 4 }{ 30° } +\cos ^{ 4 }{ 30° }  \right) -3\left( \cos ^{ 2 }{ 45° } +\sin ^{ 2 }{ 90° }  \right) $$

    $$=4\left( { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 4 }+{ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 4 } \right) -3\left( { \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }+{ 1 }^{ 2 } \right) $$

    $$=4\left( \dfrac { 1 }{ 16 } +\dfrac { 9 }{ 16 }  \right) -3\left( \dfrac { 1 }{ 2 } +1 \right) $$

    $$=\left( 4\times \dfrac { 10 }{ 16 }  \right) -\left( 3\times \dfrac { 3 }{ 2 }  \right) $$

    $$=\dfrac { 5 }{ 2 } -\dfrac { 9 }{ 2 } $$

    $$=\dfrac { -4 }{ 2 } $$

    $$=-2$$

    Hence, the answer is $$-2.$$
  • Question 4
    1 / -0
    $$\displaystyle  \sin^{2} 85^{\circ} + \sin ^{2}5^{\circ} =$$ ______
    Solution
    Given, $$ \sin ^{ 2 }{ { 85 }^{ o } }  + \sin ^{ 2 }{ { 5 }^{ o } }  $$

    We know that $$ \sin ^{ 2 }{ { A }^{ o } } = \cos ^{ 2 }{ { (90-A) }^{ o } }  $$

    $$ \Rightarrow  \sin ^{ 2 }{ { 85 }^{ o } }  + \sin ^{ 2 }{ { 5 }^{ o } }  = \cos ^{ 2 }{ {(90-85) }^{ o } }  + \sin ^{ 2 }{ { 5 }^{ o } }  = \cos ^{ 2 }{{ 5 }^{ o } }  + \sin ^{ 2 }{ { 5 }^{ o } } = 1 $$

    (Since, $$ \cos ^{ 2 }{ {A }^{ o } }  + \sin ^{ 2 }{ { A }^{ o } } = 1 $$)
  • Question 5
    1 / -0
    If $$\displaystyle \sin ^{4}\theta +\cos ^{4}\theta =\dfrac{1}{2} $$ then the value of  $$\displaystyle \sin \theta \cos \theta  $$ is  
    Solution
    We know that $$ { a }^{ 4 }+{ b }^{ 4 }=\quad \left( { a }^{ 2 }+b^{ 2 } \right) ^{ 2 }-2a^{ 2 }{ b }^{ 2 } $$

    So, $$ \sin ^{ 4 }{ \theta  } +\cos ^{ 4 }{ 0 } =\quad \left( \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right) ^{ 2 }-2(\sin ^{ 2 }{ \theta  } )^{ 2 }{ (\cos ^{ 2 }{ \theta  } ) }^{ 2 } $$

    But $$ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } = 1 $$

    So, $$ \sin ^{ 4 }{ \theta  } +\cos ^{ 4 }{ \theta }= 1^{2} -2(\sin \theta \cos \theta) ^ {2} $$
    $$ \Rightarrow  \dfrac {1}{2} = 1 - 2(\sin \theta \cos \theta) ^ {2} $$
    $$ \Rightarrow  2(\sin \theta \cos \theta) ^ {2}= \dfrac {1}{2} $$
    $$ \Rightarrow  (\sin \theta \cos \theta) ^ {2}= \dfrac {1}{4} $$
    $$ \Rightarrow  \sin \theta \cos \theta = \pm \dfrac {1}{2} $$
  • Question 6
    1 / -0
    If $$\displaystyle  \sqrt{3}\tan \theta =3\sin \theta $$ then the value of $$\displaystyle  \sin ^{2}\theta -\cos ^{2}\theta $$ is
    Solution
    Given $$\sqrt{3}\tan\theta=3\sin \theta$$

    $$\sqrt 3\dfrac{\sin \theta}{\cos \theta}=3\sin \theta$$

    $$\sqrt 3\dfrac{\sin \theta}{\cos \theta}-3\sin \theta=0$$

    $$\sqrt3\sin \theta \big(\dfrac{1}{\cos \theta}-\sqrt3\big)=0$$

    Now either $$\sin \theta=0$$ or $$\cos \theta=\dfrac{1}{\sqrt3}$$

    But $$\sin \theta \neq 0$$

    Hence $$ \cos \theta =\dfrac{1}{\sqrt3}$$ 

    Now u\sin g $$\sin ^2\theta+\cos ^2\theta=1$$,we will get $$\sin \theta=\sqrt{\dfrac{2}{3}}$$

    Hence $$\sin ^2\theta-\cos ^2\theta=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}$$
  • Question 7
    1 / -0
    If $$\displaystyle a=\cos \theta +b\sin \theta =c$$, then the value of $$\displaystyle \left ( a\sin \theta -b\cos \theta  \right )$$ is
    Solution
    $$a\cos { \theta  } +b\sin { \theta  } =c$$

    Squaring both sides, we get
    $$\Rightarrow { \left( a\cos { \theta  } +b\sin { \theta  }  \right)  }^{ 2 }={ c }^{ 2 }$$

    $$\Rightarrow { a }^{ 2 }\cos ^{ 2 }{ \theta  } +{ b }^{ 2 }\sin ^{ 2 }{ \theta  } +2ab\sin { \theta  } \cos { \theta  } ={ c }^{ 2 }$$

    $$\Rightarrow { a }^{ 2 }\left( 1-\sin ^{ 2 }{ \theta  }  \right) +{ b }^{ 2 }\left( 1-\cos ^{ 2 }{ \theta  }  \right) +2ab\sin { \theta  } \cos { \theta  } ={ c }^{ 2 }$$

    $$\Rightarrow { a }^{ 2 }-{ a }^{ 2 }\sin ^{ 2 }{ \theta  } +{ b }^{ 2 }-{ b }^{ 2 }\cos ^{ 2 }{ \theta  } +2ab\sin { \theta  } \cos { \theta  } ={ c }^{ 2 }$$

    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }-\left[ { a }^{ 2 }\sin ^{ 2 }{ \theta  } +{ b }^{ 2 }\cos ^{ 2 }{ \theta  } -2ab\sin { \theta  } \cos { \theta  }  \right] ={ c }^{ 2 }$$

    $$\Rightarrow { a }^{ 2 }\sin ^{ 2 }{ \theta  } +{ b }^{ 2 }\cos ^{ 2 }{ \theta  } -2ab\sin { \theta  } \cos { \theta  } ={ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 }$$

    $$\Rightarrow { \left( a\cos { \theta  } -b\sin { \theta  }  \right)  }^{ 2 }={ { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } } $$

    $$\Rightarrow { \left( a\cos { \theta  } -b\sin { \theta  }  \right)  }=\pm \sqrt { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } } $$

    Hence, the answer is $$\pm \sqrt { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } } .$$
  • Question 8
    1 / -0
    If $$\displaystyle \left ( \tan x+\sec x \right )\left ( \tan y+\sec y \right )\left ( \tan z+\sec z \right )=\left ( \sec x-\tan x \right )\left ( \sec y-\tan z \right )=K$$, then the value of $$K$$ is
    Solution
    $$\displaystyle \left ( \tan x+\sec x \right )^{2}\left ( \tan y+\sec y \right )^{2}\left ( \tan z+\sec z \right )^{2}$$
    $$\displaystyle =\left ( \sec ^{2}x-\tan ^{2}x \right )\left ( \sec ^{2}y-\tan ^{2}y \right )\left ( \sec ^{2}z-\tan ^{2}z \right )$$
    $$\displaystyle = 1\times 1\times 1=1=k^{2}$$
    $$\displaystyle \therefore K=\pm 1$$
  • Question 9
    1 / -0
    If $$\displaystyle \sin \Theta +\text{cosec }\Theta =2 $$ find the value of $$\displaystyle \cot \Theta +\cos \Theta  $$
    Solution
    Given, $$ \sin \Theta  + \text{cosec } \Theta  = 2 $$

    This is possible only when $$ \Theta = 90^o $$ as $$ \sin 90^0 = \text{cosec } 90^o = 1 $$

    So, $$ \cot \Theta + \cos \Theta = \cot 90^o + \cos 90^ 0 =  0 + 0 = 0 $$
  • Question 10
    1 / -0
    If $$\displaystyle \text{cosec}\, \theta -\cot \theta =x $$ then $$\displaystyle \text{cosec}\, \theta +\cot \theta =$$ _____
    Solution
    $$cosec\;\theta -\cot { \theta  } =x$$
    Now, $$cosec^{ 2 }\theta -\cot ^{ 2 }{ \theta  } =1$$
    $$\Rightarrow \left( cosec\;\theta -\cot { \theta  }  \right) \left( cosec\;\theta +\cot { \theta  }  \right) =1$$
    $$\Rightarrow x\left( cosec\;\theta +\cot { \theta  }  \right) =1$$
    $$\Rightarrow cosec\;\theta +\cot { \theta  } =\dfrac { 1 }{ x } $$
    Hence, the answer is $$\dfrac { 1 }{ x } .$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now