Self Studies

Introduction to Trigonometry Test - 56

Result Self Studies

Introduction to Trigonometry Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\cot 1^{\circ} \cot 2^{\circ} ...... \cot 89^{\circ} = $$
    Solution
    $$\cot 1^{\circ} \cot 2^{\circ} ...... \cot 89^{\circ}  $$
    $$=(\cot 1^o\cdot \cot 89^o)(\cot 2^o\cdot \cot 88^o)...............(\cot 44^o\cdot \cot 46^o)(\cot 45^o)$$
    $$=(\cot 1^o\cdot \tan 1^o)(\cot 2^o\cdot \tan 2^o)...............(\cot 44^o\cdot \tan 44^o)(\cot 45^o)$$, since $$\cot (90^o-\theta)=\tan\theta$$
    $$=(1)(1).......(1)(1)=1$$, since $$\tan\theta\cdot \cot\theta=1$$
  • Question 2
    1 / -0
    Find the value of $$\tan 10^{\circ} \tan 15^{\circ} \tan 75^{\circ} \tan 80^{\circ} $$
    Solution

  • Question 3
    1 / -0
    $$\text{cosec } (75^{\circ} + \theta) - \sec (15^{\circ} - \theta) =$$
    Solution
    Given,
    $$\csc { \left( { 75^o } +\theta  \right)  } -\sec { \left( { 15^o } -\theta  \right)  } $$
     $$=\csc { \left( { 75^o } +\theta  \right)  } -\sec { \left[ { { 90^o } -\left( 75^o+\theta  \right)  }  \right]  } $$
    $$=\csc { \left( { 75^o } +\theta  \right)  } -\csc { \left( { 75^o } +\theta  \right)  } $$
     $$=0$$
    $$0$$ will be the answer
  • Question 4
    1 / -0
    If $$\tan 2A = \cot (A - 21^{\circ})$$, where $$2A$$ is an acute angle, then $$\angle A =$$ ____
    Solution
    Given, $$\tan 2A = \cot (A - 21^{\circ})$$
    Therefore, $$ \cot (90^{\circ} - 2A) = \cot (A - 21^{\circ})$$
    $$\Rightarrow 90^{\circ} - 2A = A - 21^{\circ}$$ 
    $$\Rightarrow 90^{\circ} + 21^{\circ} = 2A + A$$
    $$\Rightarrow  111^{\circ} = 3A$$
    $$\Rightarrow A = 37^{\circ}$$
    So, $$\angle A=37^{\circ}$$ is correct.
  • Question 5
    1 / -0
    $$\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 89^{\circ} = $$
    Solution
    $$(\tan 1^{\circ} \tan 89^{\circ}) (\tan 2^{\circ} \tan 88^{\circ}) ..... (\tan 44^{\circ} \tan 46^{\circ}) \tan 45^{\circ}$$, group pair of terms 
    $$= \left \{\tan 1^{\circ} \tan (90^{\circ} - 1^{\circ})\right \} \left \{\tan 2^{\circ} \tan (90^{\circ} - 2^{\circ})\right \} ...... \left \{\tan 44^{\circ} \tan (90^{\circ} - 44^{\circ})\right \}\tan 45^{\circ}$$
    $$= (\tan 1^{\circ} \cot 1^{\circ})(\tan 2^{\circ} \cot 2^{\circ}) ..... (\tan 44^{\circ} \cot 44^{\circ}) \tan 45^{\circ}$$
    $$= (1 \times 1 ..... 1)\times 1 = 1$$

    Note that $$\tan\theta\times \cot\theta=1$$
  • Question 6
    1 / -0
    $$\tan 5^{\circ} \tan 25^{\circ} \tan 30^{\circ} \tan 65^{\circ} \tan 85^{\circ} =$$
    Solution
    $$(\tan 5^{\circ} \tan 85^{\circ}) (\tan 25^{\circ} \tan 65^{\circ}) \tan 30^{\circ}$$
    $$= [\tan 5^{\circ} \tan (90^{\circ} - 5^{\circ})] [\tan 25^{\circ} (\tan 90^{\circ} - 25^{\circ})] \times \tan 30^{\circ}$$
    $$= \tan 5^{\circ} \cot 5^{\circ} \tan 25^{\circ} \cot 25^{\circ} \times \dfrac {1}{\sqrt {3}}$$
    $$= 1\times 1\times \dfrac {1}{\sqrt {3}} = \dfrac {1}{\sqrt {3}}$$.
  • Question 7
    1 / -0
    Find the value of : $$\dfrac {\cos 38^{\circ} \csc 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} =$$
    Solution
    Given:
    $$\dfrac { \cos { { 38^o } \csc { { 52^o }  }  }  }{ \tan { { 18^o }  } \tan { { 35^o } \tan { { 60^o }  } \tan {   { 72^o }  } \tan {   { 55^o }  }  }  } $$

     $$=\dfrac { \cos {   { 38^o }  } \csc { \left(   { 90^o- }   { 38^o }  \right)  }  }{ \left( \tan {   { 18^o\times  }  } \tan {   { 72^o }  }  \right) \times \left( \tan {   { 35^o\times  }  } \tan {   { 55^o }  }  \right) \times \tan {   { 60^o }  }  } $$

     $$=\dfrac { \cos {   { 38^o }  } \sec {   { 38^o }  }  }{ \tan {   { 18^o }  } \tan { \left(   { 90^o-18^o }  \right) \tan {   { 35^o }  } \tan { \left(   { 90^o- }   { 35^o }  \right) \tan {   { 60^o }  }  }  }  } $$ 

    ( we know   that $$\tan { \left( 90^o-\theta  \right)  } =\cot { \theta  } $$ and  $$\cot { \theta  } =\dfrac { 1 }{ \tan { \theta  }  } $$and  $$\sec { \theta =\dfrac { 1 }{ \cos { \theta  }  }  } $$ and  $$\tan {   { 60^o=\sqrt { 3 }  }  } )$$

    $$\therefore \dfrac { \cos { { 38^o } \csc { { 52^o }  }  }  }{ \tan { { 18^o }  } \tan { { 35^o } \tan { { 60^o }  } \tan {   { 72^o }  } \tan {   { 55^o }  }  }  } $$

     $$=\dfrac { 1 }{ \left( \tan {   { 18^o }  } \cot {   { 18^o }  }  \right) \left( \tan {   { 35^o }  } \cot {   { 35^o }  }  \right) \sqrt { 3 }  } $$

     $$=\dfrac { 1 }{ \sqrt { 3 }  } $$
  • Question 8
    1 / -0
    Evaluate: $$\dfrac {\tan 30^{\circ}}{\cot 60^{\circ}}$$
    Solution
    Taking$$\dfrac {\tan 30^{\circ}}{\cot 60^{\circ}}$$
    $$\dfrac {\tan 30^{\circ}}{\cot (90-30)^{\circ}}$$
    as we know, $$\cot { \left( 90^0-\theta  \right)  } =\tan { \theta  } $$
    $$\dfrac {\tan 30^{\circ}}{\tan30^{\circ}}$$
    $$=1$$
  • Question 9
    1 / -0
    $$\cos 75^{\circ} + \cot 75^{\circ}$$, when expressed in terms of angles between $$0^{\circ}$$ and $$30^{\circ}$$, becomes
    Solution
    We know that
    $$\cos A = \sin(90˚-A)$$
    $$\cot A = \tan(90˚-A)$$
    $$\text{cosec } A = \sec(90˚-A)$$

    Using these, we get
    $$\cos 75^{\circ} = \sin (90˚ - 75˚) = \sin 15^{\circ}$$
    $$\cot 75^{\circ} = \tan (90˚ - 75˚) = \tan 15^{\circ} $$

    $$\therefore \cos 75^{\circ} + \cot 75^{\circ} = \sin 15^{\circ} + \tan 15^{\circ}$$.
  • Question 10
    1 / -0
    Without trigonometric table, evaluate $$\dfrac {\cot 63^{\circ}}{\tan 27^{\circ}}$$
    Solution
    Taking
    $$\dfrac {\cot 63^{\circ}}{\tan 27^{\circ}}$$
    $$\dfrac {\cot (90-27)^{\circ}}{\tan 27^{\circ}}$$
    We know,
     $$\cot { \left( 90^0-\theta  \right)  } =\tan { \theta  } $$
    $$\dfrac {\tan27^{\circ}}{\tan 27^{\circ}}$$
    $$=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now