Self Studies

Introduction to Trigonometry Test - 56

Result Self Studies

Introduction to Trigonometry Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    cot1cot2......cot89=\cot 1^{\circ} \cot 2^{\circ} ...... \cot 89^{\circ} =
    Solution
    cot1cot2......cot89 \cot 1^{\circ} \cot 2^{\circ} ...... \cot 89^{\circ}  
    =(cot1ocot89o)(cot2ocot88o)...............(cot44ocot46o)(cot45o)=(\cot 1^o\cdot \cot 89^o)(\cot 2^o\cdot \cot 88^o)...............(\cot 44^o\cdot \cot 46^o)(\cot 45^o)
    =(cot1otan1o)(cot2otan2o)...............(cot44otan44o)(cot45o)=(\cot 1^o\cdot \tan 1^o)(\cot 2^o\cdot \tan 2^o)...............(\cot 44^o\cdot \tan 44^o)(\cot 45^o), since cot(90oθ)=tanθ\cot (90^o-\theta)=\tan\theta
    =(1)(1).......(1)(1)=1=(1)(1).......(1)(1)=1, since tanθcotθ=1\tan\theta\cdot \cot\theta=1
  • Question 2
    1 / -0
    Find the value of tan10tan15tan75tan80\tan 10^{\circ} \tan 15^{\circ} \tan 75^{\circ} \tan 80^{\circ}
    Solution

  • Question 3
    1 / -0
    cosec (75+θ)sec(15θ)=\text{cosec } (75^{\circ} + \theta) - \sec (15^{\circ} - \theta) =
    Solution
    Given,
    csc(75o+θ ) sec(15oθ ) \csc { \left( { 75^o } +\theta  \right)  } -\sec { \left( { 15^o } -\theta  \right)  }
     =csc(75o+θ ) sec[90o(75o+θ )  ] =\csc { \left( { 75^o } +\theta  \right)  } -\sec { \left[ { { 90^o } -\left( 75^o+\theta  \right)  }  \right]  }
    =csc(75o+θ ) csc(75o+θ ) =\csc { \left( { 75^o } +\theta  \right)  } -\csc { \left( { 75^o } +\theta  \right)  }
     =0=0
    00 will be the answer
  • Question 4
    1 / -0
    If tan2A=cot(A21)\tan 2A = \cot (A - 21^{\circ}), where 2A2A is an acute angle, then A=\angle A = ____
    Solution
    Given, tan2A=cot(A21)\tan 2A = \cot (A - 21^{\circ})
    Therefore, cot(902A)=cot(A21) \cot (90^{\circ} - 2A) = \cot (A - 21^{\circ})
    902A=A21\Rightarrow 90^{\circ} - 2A = A - 21^{\circ} 
    90+21=2A+A\Rightarrow 90^{\circ} + 21^{\circ} = 2A + A
     111=3A\Rightarrow  111^{\circ} = 3A
    A=37\Rightarrow A = 37^{\circ}
    So, A=37\angle A=37^{\circ} is correct.
  • Question 5
    1 / -0
    tan1tan2tan3...tan89=\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 89^{\circ} =
    Solution
    (tan1tan89)(tan2tan88).....(tan44tan46)tan45(\tan 1^{\circ} \tan 89^{\circ}) (\tan 2^{\circ} \tan 88^{\circ}) ..... (\tan 44^{\circ} \tan 46^{\circ}) \tan 45^{\circ}, group pair of terms 
    ={tan1tan(901)}{tan2tan(902)}......{tan44tan(9044)}tan45= \left \{\tan 1^{\circ} \tan (90^{\circ} - 1^{\circ})\right \} \left \{\tan 2^{\circ} \tan (90^{\circ} - 2^{\circ})\right \} ...... \left \{\tan 44^{\circ} \tan (90^{\circ} - 44^{\circ})\right \}\tan 45^{\circ}
    =(tan1cot1)(tan2cot2).....(tan44cot44)tan45= (\tan 1^{\circ} \cot 1^{\circ})(\tan 2^{\circ} \cot 2^{\circ}) ..... (\tan 44^{\circ} \cot 44^{\circ}) \tan 45^{\circ}
    =(1×1.....1)×1=1= (1 \times 1 ..... 1)\times 1 = 1

    Note that tanθ×cotθ=1\tan\theta\times \cot\theta=1
  • Question 6
    1 / -0
    tan5tan25tan30tan65tan85=\tan 5^{\circ} \tan 25^{\circ} \tan 30^{\circ} \tan 65^{\circ} \tan 85^{\circ} =
    Solution
    (tan5tan85)(tan25tan65)tan30(\tan 5^{\circ} \tan 85^{\circ}) (\tan 25^{\circ} \tan 65^{\circ}) \tan 30^{\circ}
    =[tan5tan(905)][tan25(tan9025)]×tan30= [\tan 5^{\circ} \tan (90^{\circ} - 5^{\circ})] [\tan 25^{\circ} (\tan 90^{\circ} - 25^{\circ})] \times \tan 30^{\circ}
    =tan5cot5tan25cot25×13= \tan 5^{\circ} \cot 5^{\circ} \tan 25^{\circ} \cot 25^{\circ} \times \dfrac {1}{\sqrt {3}}
    =1×1×13=13= 1\times 1\times \dfrac {1}{\sqrt {3}} = \dfrac {1}{\sqrt {3}}.
  • Question 7
    1 / -0
    Find the value of : cos38csc52tan18tan35tan60tan72tan55=\dfrac {\cos 38^{\circ} \csc 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} =
    Solution
    Given:
    cos38ocsc52o   tan18o tan35otan60o tan 72o tan 55o   \dfrac { \cos { { 38^o } \csc { { 52^o }  }  }  }{ \tan { { 18^o }  } \tan { { 35^o } \tan { { 60^o }  } \tan {   { 72^o }  } \tan {   { 55^o }  }  }  }

     =cos 38o csc( 90o 38o )  (tan 18o×  tan 72o  )×(tan 35o×  tan 55o  )×tan 60o  =\dfrac { \cos {   { 38^o }  } \csc { \left(   { 90^o- }   { 38^o }  \right)  }  }{ \left( \tan {   { 18^o\times  }  } \tan {   { 72^o }  }  \right) \times \left( \tan {   { 35^o\times  }  } \tan {   { 55^o }  }  \right) \times \tan {   { 60^o }  }  }

     =cos 38o sec 38o  tan 18o tan( 90o18o )tan 35o tan( 90o 35o )tan 60o    =\dfrac { \cos {   { 38^o }  } \sec {   { 38^o }  }  }{ \tan {   { 18^o }  } \tan { \left(   { 90^o-18^o }  \right) \tan {   { 35^o }  } \tan { \left(   { 90^o- }   { 35^o }  \right) \tan {   { 60^o }  }  }  }  }  

    ( we know   that tan(90oθ ) =cotθ \tan { \left( 90^o-\theta  \right)  } =\cot { \theta  } and  cotθ =1tanθ  \cot { \theta  } =\dfrac { 1 }{ \tan { \theta  }  } and  secθ=1cosθ   \sec { \theta =\dfrac { 1 }{ \cos { \theta  }  }  } and  tan 60o=3  )\tan {   { 60^o=\sqrt { 3 }  }  } )

    cos38ocsc52o   tan18o tan35otan60o tan 72o tan 55o   \therefore \dfrac { \cos { { 38^o } \csc { { 52^o }  }  }  }{ \tan { { 18^o }  } \tan { { 35^o } \tan { { 60^o }  } \tan {   { 72^o }  } \tan {   { 55^o }  }  }  }

     =1(tan 18o cot 18o  )(tan 35o cot 35o  )3 =\dfrac { 1 }{ \left( \tan {   { 18^o }  } \cot {   { 18^o }  }  \right) \left( \tan {   { 35^o }  } \cot {   { 35^o }  }  \right) \sqrt { 3 }  }

     =13 =\dfrac { 1 }{ \sqrt { 3 }  }
  • Question 8
    1 / -0
    Evaluate: tan30cot60\dfrac {\tan 30^{\circ}}{\cot 60^{\circ}}
    Solution
    Takingtan30cot60\dfrac {\tan 30^{\circ}}{\cot 60^{\circ}}
    tan30cot(9030)\dfrac {\tan 30^{\circ}}{\cot (90-30)^{\circ}}
    as we know, cot(900θ ) =tanθ \cot { \left( 90^0-\theta  \right)  } =\tan { \theta  }
    tan30tan30\dfrac {\tan 30^{\circ}}{\tan30^{\circ}}
    =1=1
  • Question 9
    1 / -0
    cos75+cot75\cos 75^{\circ} + \cot 75^{\circ}, when expressed in terms of angles between 00^{\circ} and 3030^{\circ}, becomes
    Solution
    We know that
    cosA=sin(90˚A)\cos A = \sin(90˚-A)
    cotA=tan(90˚A)\cot A = \tan(90˚-A)
    cosec A=sec(90˚A)\text{cosec } A = \sec(90˚-A)

    Using these, we get
    cos75=sin(90˚75˚)=sin15\cos 75^{\circ} = \sin (90˚ - 75˚) = \sin 15^{\circ}
    cot75=tan(90˚75˚)=tan15\cot 75^{\circ} = \tan (90˚ - 75˚) = \tan 15^{\circ}

    cos75+cot75=sin15+tan15\therefore \cos 75^{\circ} + \cot 75^{\circ} = \sin 15^{\circ} + \tan 15^{\circ}.
  • Question 10
    1 / -0
    Without trigonometric table, evaluate cot63tan27\dfrac {\cot 63^{\circ}}{\tan 27^{\circ}}
    Solution
    Taking
    cot63tan27\dfrac {\cot 63^{\circ}}{\tan 27^{\circ}}
    cot(9027)tan27\dfrac {\cot (90-27)^{\circ}}{\tan 27^{\circ}}
    We know,
     cot(900θ ) =tanθ \cot { \left( 90^0-\theta  \right)  } =\tan { \theta  }
    tan27tan27\dfrac {\tan27^{\circ}}{\tan 27^{\circ}}
    =1=1
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now