Self Studies

Some Applications of Trigonometry test - 18

Result Self Studies

Some Applications of Trigonometry test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angles of depression of the foot and the top of a pole at the top of a tower of height 100100 metres are 4545^{ } and 30030^{0} respectively. The height of the pole is
    Solution
           tan45=100d\tan 45 = \dfrac{100}{d}
    tan300=100hd\tan 30 ^{0} = \dfrac{100 -h}{d}
          3=100100h\sqrt{3} = \dfrac{100}{100 -h}
    3100100=h3\sqrt{3}100-100 = h \sqrt{3}
    h=100(33)3m. h = \dfrac{100(3-\sqrt{3})}{{3}} m.
  • Question 2
    1 / -0
     A person walking along a straight road towards a hill observes at two points distance  3\sqrt{3} km, the angle of elevation of the hill to be 30030^{0} and 60060^{0}. The height of the hill is   
    Solution
    tan60= hd\tan 60=  \dfrac{h}{d}
    tan30= h3+d\tan 30=  \dfrac{h}{ \sqrt{3}+d }
    3= 3+dd3 =  \dfrac{\sqrt{3}+d}{d}
    2= 3d2 =  \dfrac{ \sqrt{3} }{d}
    d= 32d =  \dfrac{ \sqrt{3} }{2}
    h= 3 ×32h =  \sqrt{3}  \times \dfrac{ \sqrt{3} }{2}
      = 32km =  \dfrac{3}{2} km


  • Question 3
    1 / -0
    AA man standing on a level plane observes the elevation of the top of a pole to be α\alpha. He then walks a distance equal to double the height of the pole and then finds that the elevation is now 2α2\alpha. Then α=\alpha=
    Solution
    Let, OPOP be the height of tower hh and OAP=α,OBP=2α\angle OAP=\alpha,\angle OBP=2\alpha
    AB=2hAB=2h (Given) and
    AB=OAOB1AB=OA-OB\dots 1

    In OBP\triangle OBP:
    OBOP=cot2α\dfrac{OB}{OP}=\cot 2\alpha
    OB=OPcot2αOB=OP \cot 2\alpha
    OB=hcot2αOB=h\cot2\alpha

    In OAP\triangle OAP:
    OAOP=cotα\dfrac{OA}{OP}=\cot \alpha
    OA=OPcotαOA=OP \cot \alpha
    OA=hcotαOA=h\cot \alpha

    Substituting the values of ABAB, OAOA and OBOB in equation 11:
    2h=hcotα hcot2α 2h=h\cot { \alpha  } -h\cot { 2\alpha  }

    2=cosαsinαcos2αsin2α2=\dfrac{\cos \alpha}{\sin \alpha}-\dfrac{\cos 2\alpha}{\sin 2\alpha}

    cosα sin2α sinα cos2α =2sinα sin2α  \cos { \alpha  } \sin { 2\alpha  } -\sin { \alpha  } \cos { 2\alpha  } =2\sin { \alpha  } \sin { 2\alpha  }

    sinα =2sinα sin2α \sin { \alpha  } =2\sin { \alpha  } \sin { 2\alpha  }

    sin2α =12(sinα 0)\displaystyle \sin { 2\alpha  } =\frac { 1 }{ 2 } \quad \quad \quad \left( \because \sin { \alpha  } \neq 0 \right)

    2α=π 6α=π 12=15\displaystyle 2\alpha =\frac { \pi  }{ 6 } \Rightarrow \alpha =\frac { \pi  }{ 12 } ={ 15 }^{ \circ}

  • Question 4
    1 / -0
    Two pillars of equal height stand at a distance of 100100 metres. AAt a point between them the elevation of their tops are found to be 30o30^{o } and 60060^{0} Then height of the each pillar in metres is
    Solution
    Let's h'h' be the height of each pillar and dd is distance from one pillar to the point.

    tan30 0=hd\tan 30  ^{0} = \dfrac{h}{d}

    d=h3d = h\sqrt{3}

    tan60o=h100d\tan 60^o = \dfrac{h}{100-d}

    100h3=h3100- h\sqrt{3} = \dfrac{h}{\sqrt{3}}

    Simplify further,

    10033h=h100\sqrt{3}-3h=h

    Thus,

    h=253m.h = 25\sqrt{3} m.

  • Question 5
    1 / -0
    AA flag staff stands upon the top of a building. AAt a distance of 40 mm. the angles of elevation of the tops of the flag staff and building are 60060^{ 0} and 30030^{0} then the height of the flag staff in metres is
  • Question 6
    1 / -0
    A tower subtends an angle α\alpha at a pointAA on the same level as the foot of the tower BB is a point vertically above AA and AB=hAB=h metres. The angle of depression of the foot of the tower from BB is β\beta. The height of the tower is
    Solution
    tanα=h1d\tan\alpha =\dfrac{h_{1}}{d}
    tanβ =hd\tan\beta  =\dfrac{h}{d}
    tanαtanβ=h1h\dfrac{\tan\alpha }{\tan\beta }=\dfrac{h_{1}}{h}
    h1=htanαcotβh_1=h \tan \alpha \cot \beta

  • Question 7
    1 / -0
    The horizontal distance between two towers is 3030 meters. From the foot of the first tower the angle of elevation of the top of the second tower is 60o60^{o}. From the top of the second tower the angle of depression of the top of the first is 30o30^{o}. The height of the small tower is:
    Solution

    tan60o=h230\tan 60^o= \dfrac{h_{2}}{30} ...{1}


    tan30o=h2h130\tan 30^o=\dfrac{h_{2}-h_{1}}{30}  ...{2}


    tan30o=h230h130\tan 30^{o}=\dfrac{h_{2}}{30}-\dfrac{h_{1}}{30}

    From {1} and {2}

    h130=tan60otan30o\Rightarrow \dfrac{h_{1}}{30}=\tan 60^o - \tan 30^o


    h130=313\Rightarrow \dfrac{h_{1}}{30}=\dfrac{3-1}{\sqrt{3}}


    h1=30×23\Rightarrow h_1=\dfrac{30\times2}{\sqrt{3}}


    h1=203m\Rightarrow h_{1}=20\sqrt{3} \,m

  • Question 8
    1 / -0
     C is the mid point of the line joining two pionts A,B on the ground. A tower at C slightly leans towards B. If the angles of elevation of the top of the tower from A and B are 300,60030^{0},60^{0} respectvely, the angle made by the tower with the horizontal is
  • Question 9
    1 / -0
    A pole of height hh stands at one corner of a park in the shape of an equilateral triangle. If α\alpha is the angle which the pole subtends at the midpoint of the opposite side, the length of each side of the park is:
  • Question 10
    1 / -0
    Straight pole(AB) subtends a right angle at a point DD of another pole at a distance of 3030 meters from AA, the top of AA being 60060^{0} above the horizontal line joining the point BB to the pole AA. The length of the pole AA is, in meters
    Solution
    tan60=h230\tan60=\dfrac{h_{2}}{30}
    h2=303h_{2}= 30\sqrt{3}
    tan300=h130\tan30^{0}=\dfrac{h_{1}}{30}
    h1=103h_{1}=10\sqrt{3}
    h1+h2h_{1}+h_{2} =  length of  the  pole  =40340\sqrt{3}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now