$$ {\textbf{Step 1: Find m}} $$
$$ {\text{For m,}} $$
$$ {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}}
$$
$$ {\text{Number of ways =
}}{}^{10}{{\text{C}}_5} $$
$$ {\text{Now after selection there is only 1 way
to arrange these selected digits, i}}{\text{.e}}{\text{., in descending
order}}{\text{.}} $$
$$ {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{ 1 = }}{}^{10}{{\text{C}}_5} $$
$$ {\textbf{Step 2: Find n}} $$
$$ {\text{For n,First we select any 5 digits
from 1,2,}}...{\text{,9}} $$
$$ {\text{We can't select zero as first digit because then the number won't be a 5 - digit number}}{\text{.}} $$
$$ {\text{Therefore number of ways = }}{}^9{{\text{C}}_5} $$
$$ \Rightarrow {\text{n =
}}{}^9{{\text{C}}_5}\times{\text{ 1 = }}{}^9{{\text{C}}_5} $$
$$ \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{
- }}{}^9{{\text{C}}_5} $$
$$ {\text{We know that,}}{}^n{{\text{C}}_r}{\text{
+ }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r} $$
$$ \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{
- }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}} $$
$$ \Rightarrow {}^{10}{{\text{C}}_5}{\text{ -
}}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4} $$
$$ {\text{Hence, m - n = }}{}^9{{\text{C}}_4} $$
$$ {\textbf{Hence, the correct
answer is option A}} $$