Self Studies

Differentiation Test 46

Result Self Studies

Differentiation Test 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x\sqrt {1 + y}  + y\sqrt {1 + x}  = 0$$, then $$\dfrac {dy}{dx}$$ is equal to
    Solution
    Given $$x\sqrt{1+y}+y\sqrt{1+x}=0$$
      $$x\sqrt{1+y}=-y\sqrt{1+x}$$
    $$\cfrac{\sqrt{1+y}}{y}=-\cfrac{\sqrt{1+x}}{x}$$
    $$\left (\cfrac{\sqrt{1+y}}{y}  \right )^{2}=\left ( -\cfrac{\sqrt{1+x}}{x} \right )^{2}$$
      $$\cfrac{1+y}{y^{2}}=\cfrac{1+x}{x^{2}}$$
      $$x^{2}+x^{2}y=y^{2}+y^{2}x$$
      $$x^{2}-y^{2}=y^{2}x-x^{2}y$$
    $$(x+y)(x-y)=xy(y-x)$$
    $$\therefore x+y+xy=0\Rightarrow y=\cfrac{-x}{1+x}$$   $$(\because x\neq y)$$
     Differentiate on both sides w.r.t x
    $$1+\cfrac{\mathrm{d} y}{\mathrm{d} x}+x\cfrac{\mathrm{d} y}{\mathrm{d} x}+y=0$$
       $$\therefore \cfrac{\mathrm{d} y}{\mathrm{d} x}=\cfrac{-(1+y)}{1+x}$$
                    $$=\cfrac{-\left ( 1-\cfrac{x}{1+x} \right )}{1+x}$$
                $$=\cfrac{-1}{(1+x)^{2}}$$
      $$\therefore \cfrac{\mathrm{d} y}{\mathrm{d} x}=\cfrac{-1}{(1+x)^{2}}$$
  • Question 2
    1 / -0
    Seven person $$P_1,P_2......, P_7$$ initially seated at chairs $$C_1,C_2,.....C_7$$ respectively.They all left there chairs simultaneously for hand wash. Now in how many ways they can again take seats such that no one sits on his own seat and $$P_1$$, sits on $$C_2$$ and $$P_2$$ sits on $$C_3$$ ?
    Solution

  • Question 3
    1 / -0
    If $$m$$ denotes the number of $$5$$ digit numbers if each successive digits are in their descending order of magnitude and $$n$$ is the corresponding figure. When the digits and in their ascending order of magnitude then $$(m-n)$$ has the value
    Solution

    $$  {\textbf{Step 1: Find m}} $$

                    $$  {\text{For m,}} $$

                    $$  {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}} $$

                    $$  {\text{Number of ways = }}{}^{10}{{\text{C}}_5} $$

                    $$  {\text{Now after selection there is only 1 way to arrange these selected digits, i}}{\text{.e}}{\text{., in descending order}}{\text{.}} $$

                    $$  {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{  1 = }}{}^{10}{{\text{C}}_5} $$

    $$  {\textbf{Step 2: Find n}} $$

                    $$  {\text{For n,First we select any 5 digits from 1,2,}}...{\text{,9}} $$

                    $$  {\text{We can't select zero as  first digit because then the number won't be a 5 - digit number}}{\text{.}} $$

                    $$  {\text{Therefore number of ways  = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{n = }}{}^9{{\text{C}}_5}\times{\text{  1 = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5} $$ 

                    $$  {\text{We know that,}}{}^n{{\text{C}}_r}{\text{ + }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r} $$

                    $$   \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{ - }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}} $$

                    $$   \Rightarrow {}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4} $$

                    $$  {\text{Hence, m - n = }}{}^9{{\text{C}}_4} $$

    $$  {\textbf{Hence, the correct answer is option A}} $$

     

  • Question 4
    1 / -0
    There are $$2$$ identical white balls, $$3$$ identical red balls and $$4$$ green balls of different shades. The number of ways in which they can be arranged in a row so that atleast one ball is separated from the balls of the same colour, is
    Solution
    These are totally $$9$$ balls of which $$2$$ are identical of one kind, $$3$$ are a like of another kind $$and$$ $$4$$ district ones.

    At least one ball of same color separated $$=$$ Total $$-$$ No ball of same color is separated
    Total permutation $$=\dfrac{9!}{2!3!}$$

    For no ball is separated : we consider all balls of same color as $$1$$ entity, so there are $$3$$ entities which can be placed in $$3!$$ ways.

    The white and red balls are identical so they will be placed in $$1$$ way whereas green balls are different so they can be placed in $$4!$$ ways
    $$\Rightarrow Req=3!\times 4!$$

    At least one ball is separated $$=\dfrac{9!}{2!3!}-3!4!$$

                                                      $$=\dfrac{9\times 8\times 7!}{2\times 6}-6\times 4!$$
                                                    
                                                      $$=6\left(7!\right)-6\left(\times 4!\right) $$

                                                      $$=6\left( 7!-4!\right ).$$

    Hence, the answer is $$6\left( 7!-4!\right ).$$
  • Question 5
    1 / -0
    If $$\int_{0}^{x}(t^{2}+2t+2)$$ dt, $$2\leq x\leq 4$$
  • Question 6
    1 / -0
    If $$y^{y^{y^{....{^\infty}}}} = \log_e(x+\log_e(x+....))$$, then $$\dfrac{dy}{dx}$$ at $$(x= e^2-2, y= \sqrt2)$$ is
    Solution

  • Question 7
    1 / -0
    Let $$y=x^{x^x}$$, then differentiate $$y$$ w.r.t $$x$$.
    Solution
    $$y=x^{x^x}$$
    diffrentiate it w.r.t.$$x$$
    $$\dfrac{dy}{dx}=(e^{lnx^{x^x}})^{'}$$
    $$\dfrac{dy}{dx}=(e^{x^x lnx})^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}lnx)^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(xlnx)^{'}ln x$$+$$\dfrac{e^{xlnx}}{x})$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(xlnx)^{'}ln x$$+$$\dfrac{e^{xlnx}}{x})$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(lnx+\dfrac{x}{x})ln x$$+$$\frac{e^{xlnx}}{x}$$
    $$\dfrac{dy}{dx}=x^{x^{x}}$$$$(x^x(lnx+1)lnx+\dfrac{x^x}{x}$$
    $$\dfrac{dy}{dx}=x^{x^{x}}$$$$(x^x)(\dfrac{1}{x}+lnx+(lnx)^2)$$
    so option C is correct.
  • Question 8
    1 / -0
    if $$\int \dfrac {\cos 4x+1}{\cos x-\tan x}dx=A \cos 4x+B;$$ where $$A$$ & $$B$$ are constants, then 
    Solution

  • Question 9
    1 / -0
    How many $$10-digit$$ numbers can be formed by using the digits $$1$$ and $$2$$?
    Solution

    Each place of a ten digit number can be fixed by any of the two digits. So, the number of ways to form a ten digit number is $${2^{10}}$$.

  • Question 10
    1 / -0
    What is the value of $$^nC_n$$?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now