Self Studies

Sequences and Series Test 16

Result Self Studies

Sequences and Series Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If P (n, n) denotes the number of permutations of n different things taken all at a time then P (n, n ) is also identical to:
    Solution

  • Question 2
    1 / -0
    Observe the given pattern
    4×0+1=014\times 0+1=01
    4×1+2=064\times1+2=06 
    4×2+3=114\times 2+3=11
    4×3+4=164\times 3+4=16
    Then the value of 4×8+94\times8+9 is -----
    Solution
    If we carefully observe the pattern
    in first  row it shows four multiply with zero addition one equals one
    same for other pattern too
    so answer of 4×8+9=414\times 8+9 = 41
  • Question 3
    1 / -0
    When we realize a specific implementation of a pancake algorithm, every move when we find the greatest of the sized array and flipping can be modeled through ____________.
    Solution
    Unlike a traditional sorting algorithm, which attempts to sort with the fewest comparisons possible, the goal is to sort the sequence in as few reversals as possible.
    Here when we flipping the array or stack, we have to take utmost priority to preserve the order of the list so that that sorting doesnt become invalid. Hence we use permutations, we are ensuring that order matters.
  • Question 4
    1 / -0
    The value of E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{ 3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) }  is,
    Solution
    E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) } 

    =181920.............361234...............19202122.............361234...............17\quad =\displaystyle \frac{\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}}{\displaystyle \frac{20\cdot 21\cdot 22.............36}{1\cdot 2\cdot 3\cdot 4...............17}}


       =181920.............361234...............19×1234...............17202122.............36 \ \ \ =\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{20\cdot 21\cdot 22.............36}


    =181920.............36202122.............36×1234...............171234...............19\quad = \displaystyle \frac{18\cdot 19\cdot 20.............36}{20\cdot 21\cdot 22.............36}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{1\cdot 2\cdot 3\cdot 4...............19}


    $$\displaystyle  \ \ \  =\frac{18\cdot 19}{1}\times \frac{1}{18\cdot 19}=1$$
  • Question 5
    1 / -0
    A point (a,b)(a, b) is called a good point if both aa and bb are integers. Number of good points on the curve xyxy == 225225 are
    Solution
    The order pair (x,y)(x, y) satisfying xy=225xy=225 are (1,225),(3,75)(5,45),(9,25),(15,15)(1, 225), (3, 75) (5, 45), (9, 25), (15, 15). Order can be changed in the first four pairs and both xx and yy can be negative also, so the no. of pairs =2(2×4+1)=18=2(2\times 4+1)=18
  • Question 6
    1 / -0
    The area of a triangle with vertices (a,b+c),(b,c+a)(a, b + c), (b, c + a) and (c,a+b)(c, a + b) is
    Solution
    The area of ABC\triangle ABC with vertices A(x1,y1)A\equiv(x_1, y_1)B(x2,y2)B\equiv(x_2, y_2) and C(x3,y3)C\equiv(x_3, y_3) is given as,
    A(ABC)=12[x1(y3y2)+x2(y1y3)+x3(y2y1)]A(\triangle ABC) = \left|\dfrac12[x_1(y_3-y_2) +x_2(y_1 - y_3) + x_3(y_2-y_1) ]\right|
    In this problem,
    A(ABC)=12[a(a+b(c+a))+b(b+c(a+b))+c(c+a(b+c))]A(\triangle ABC) = \left|\dfrac12[a(a+b-(c+a)) +b(b+c - (a+b)) + c(c+a-(b+c)) ]\right|
    A(ABC)=12[abac+bcba+cacb]\therefore A(\triangle ABC) = \left|\dfrac12[ab-ac + bc-ba + ca-cb]\right|
    A(ABC)=0\therefore A(\triangle ABC) = 0
    Hence, the correct Option is D.
  • Question 7
    1 / -0
     In a class there are 1010 boys and 88 girls. The teacher wants to select either a boy or a girl to represent the class in a function. The number of ways the teacher can make this selection.
    Solution
    There are 1010 boys and 88 girls in a class. 
    The teacher wants to select just one to represent the class. 
    One boy out of 1010 can be selected in 1010 ways. 
    Similarly, one girl out of 88 can be selected in 88 ways. 
    So, if he has to select either a boy OR a girl, he can do it in total 10+810+8 number of ways. i.e 1818
  • Question 8
    1 / -0
    Plot (3,0),(5,0)(3, 0), (5, 0) and (0,4)(0, 4) on cartesian plane. Name the figure formed by joining these points and find its area.
    Solution
    The figure is a triangle.
    We know that the area of the triangle whose vertices are (x1,y1),(x2,y2),\displaystyle (x_{1},y_{1}),(x_{2},y_{2}), and (x3,y3)(x_{3},y_{3}) is 12x1(y2y3)+x2(y3y1)+x3(y1y2)\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |
    Therefore, 
    Area =12[3(04)+5(40)+0]=4= \dfrac{1}{2} [3(0-4)+5(4-0)+0] = 4 square units.

  • Question 9
    1 / -0
    The area of a triangle with vertices A(3,0),B(7,0)A (3, 0), B (7, 0) and C(8,4)C (8, 4) is
    Solution
    The area of the  ΔABC \Delta ABC with vertices 
    A(x1,y1)=(3,0),B(x2,y2)=(7,0) & C(x3,y3)=(8,4) A\left( { x }_{ 1 },{ y }_{ 1 } \right)=(3,0), B\left( { x }_{ 2 },{ y }_{ 2 } \right)=(7,0)\ \&\ C\left( { x }_{ 3 },{ y }_{ 3 } \right)=(8,4) is 
    Ar.ΔABC=12[x1(y2y3)+x2(y3y1)+x3(y1y2) ] Ar.\Delta ABC=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right]
    =12{3(04)+7(40)+8(00) }=\dfrac { 1 }{ 2 } \left\{ 3\left( 0-4 \right) +7\left( 4-0 \right) +8\left( 0-0 \right)  \right\} sq.units =8=8 sq. units.
    Hence, option C.
  • Question 10
    1 / -0
    Three Men have 44 coats 55 waist Coats, and 66 caps. The number of ways they can wear them is
    Solution
    Coats  4P3\rightarrow  ^4P_3
    4 3 2
    Waist Coats  5P3\rightarrow   ^5P_3
    5 4 3
    Caps   6P3\rightarrow   ^6P_3
    6 5 4
    Total no. of ways of wearing them= 4P3 ^4P_3 x 5P3 ^5P_3 x  6P3 ^6P_3
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now