Self Studies

Sequences and Series Test 32

Result Self Studies

Sequences and Series Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The unit's place digit in (1446)4n+3(1446)^{4n + 3} is
    Solution

  • Question 2
    1 / -0

    From 0 to 9 , four digited numbers can be formed such that
    the digits  are in ascending order is

    Solution
    Selection of4 4 digits out of10 10 (including 0)=10C4 ^{10}C_4

  • Question 3
    1 / -0
    If p:q:r=1:2:3  thenp:q:r=1:2:3\;then 5p2+q2+r2\sqrt {5{p^2} + {q^2} + {r^2}} is equal to: 
    Solution
    Consider the problem

    Given, p:q:r=1:2:3p:q:r=1:2:3

    Therefore, p1=q2=r4=k\frac{p}{1} = \frac{q}{2} = \frac{r}{4} = k  (let)

    So, p=k,q=2k,r=4kp = k,q = 2k,r = 4k

    Therefore,

    5p2+q2+r2 =5k2+4k2+16k2 =25k2 5k=5p\begin{array}{l} \sqrt { 5{ p^{ 2 } }+{ q^{ 2 } }+{ r^{ 2 } } }  \\ =\sqrt { 5{ k^{ 2 } }+4{ k^{ 2 } }+16{ k^{ 2 } } }  \\ =\sqrt { 25{ k^{ 2 } } }  \\ 5k=5p \end{array}

    Hence, Option BB is the correct answer which is 5p5p
  • Question 4
    1 / -0
    77 boys and 88 girls have to sit in a row on 1515 chairs numbered from 11 to 1515 then?
    Solution
    Gdenotes  GirlsXdenotes  boysG×G×G×G×G×G×G×GNumber  of  ways  ofGirls  is  8!  alternateNumber  of  ways  ofboys  is  7!       after  lateNumber  of  boys  and  girls  sit  alternate  =8!7!When  first  and  fifteen  chair  are  fixed  and first  chair  ×G×G×G×G×G×G×G×fifteen  chair  between  any  two  boys              9C48!7!   Ans. \begin{matrix} G-denotes\, \, Girls \\ X-denotes\, \, boys \\ \Rightarrow G\times G\times G\times G\times G\times G\times G\times G \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, Girls\, \, is\, \, 8!\, \, alternate \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, boys\, \, is\, \, 7! \\ \, \, \, \, \, \, \, after\, \, late \\ \Rightarrow Number\, \, of\, \, boys\, \, and\, \, girls\, \, sit\, \, alternate\, \, =8!7! \\ When\, \, first\, \, and\, \, fifteen\, \, chair\, \, are\, \, fixed\, \, and\,  \\ \, first\, \, chair\, \, \times G\times G\times G\times G\times G\times G\times G\times fifteen\, \, chair\, \, between\, \, any\, \, two\, \, boys \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \underline { 9{ C_{ 4 } }8!7! } \, \, \, Ans. \\  \end{matrix}
  • Question 5
    1 / -0
    The three digits in 10! are:
    Solution
    As we know that 10!=1×2×3×4×5×6×7×8×9×1010!=1\times 2\times 3\times 4\times 5\times 6\times 7\times 8\times 9\times 10
    10!=102(3×4×6×7×8×9)10!=10^2(3\times 4\times 6\times 7\times 8\times 9)
    10!=102(34×26×7)10!=10^2(3^4\times 2^6\times 7)
    10!=102(81×64×7)10!=10^2(81\times 64\times 7)
    The last three digit in 10!10! is 800800
    The correct option is A.

  • Question 6
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

  • Question 7
    1 / -0
    A is a set containing n elements. A  subset P of A is chosen. The set A is reconstructed by replacing the element of P.A subset Q of A is again chosen. The number of way of choosing P and Q so that P Q =ϕ\phi is :- 
    Solution
    Let A = a1,a2,a3,....an{a_{1},a_{2},a_{3},....a_{n}}. For a1a_{1} ϵ\epsilon For a1ϵa_{1} \epsilon A we have following choices:
    (i) a1ϵa_{1} \epsilon P and a1ϵa_{1} \epsilon Q
    (ii) a1ϵa_{1} \epsilon \notin  
    (iii) 1Panda1ϵQ_{1}\notin P and a_{1}\epsilon Q
    (Iv)1Panda1 Q_{1}\notin P and a_{1}\notin  Q
    Out of these only (Ii), and (iii)  and (iv) imply a1PQa_{1}\notin P\cap Q therefore, the number of ways in which none of a1,a2.....ana_{1},a_{2}.....a_{n} belong PQP\cap Q is 3n3^{n}.
  • Question 8
    1 / -0
    Find: 6,25,62,123,(?),3416,25,62,123,(?),341
    Solution
    6=232=66=2^{3}-2=6
    25=332=2525=3^{3}-2=25
    62=432=6262=4^{3}-2=62
    123=532=123123=5^{3}-2=123
    214=632=214214=6^{3}-2=214
    341=732=341341=7^3-2=341

    Missing term is 214214
  • Question 9
    1 / -0
    Let 5<n1<n2<n3<n45 < n_1 < n_2 < n_3 < n_4 be integers such that n1+n2+n3+n4=35n_1+n_2+n_3+n_4=35. The number of such distinct arrangements (n1,n2,n3,n4)(n_1, n_2, n_3, n_4).
    Solution
    n1+n2+n3+.....+nk=R{ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+.....+{ n }_{ k }=R
    for this arrangement,
    No. of arrangement or distinct arrangements are R+K1CK1{ R+K-1 }_{ { C }_{ K-1 } }
    So, for n1+n2+n3+n4=35{ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+{ n }_{ 4 }=35
    No. of arrangements =35+41C41=38C3={ 35+4-1 }_{ { C }_{ 4-1 } }={ 38 }_{ { C }_{ 3 } }
  • Question 10
    1 / -0
    Select the missing number from the given responses ?

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now