Self Studies

Sequences and Series Test 32

Result Self Studies

Sequences and Series Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The unit's place digit in $$(1446)^{4n + 3}$$ is
    Solution

  • Question 2
    1 / -0

    From 0 to 9 , four digited numbers can be formed such that
    the digits  are in ascending order is

    Solution
    Selection of$$ 4$$ digits out of$$ 10$$ (including 0)=$$ ^{10}C_4$$

  • Question 3
    1 / -0
    If $$p:q:r=1:2:3\;then$$ $$\sqrt {5{p^2} + {q^2} + {r^2}} $$ is equal to: 
    Solution
    Consider the problem

    Given, $$p:q:r=1:2:3$$

    Therefore, $$\frac{p}{1} = \frac{q}{2} = \frac{r}{4} = k$$  (let)

    So, $$p = k,q = 2k,r = 4k$$

    Therefore,

    $$\begin{array}{l} \sqrt { 5{ p^{ 2 } }+{ q^{ 2 } }+{ r^{ 2 } } }  \\ =\sqrt { 5{ k^{ 2 } }+4{ k^{ 2 } }+16{ k^{ 2 } } }  \\ =\sqrt { 25{ k^{ 2 } } }  \\ 5k=5p \end{array}$$

    Hence, Option $$B$$ is the correct answer which is $$5p$$
  • Question 4
    1 / -0
    $$7$$ boys and $$8$$ girls have to sit in a row on $$15$$ chairs numbered from $$1$$ to $$15$$ then?
    Solution
    $$\begin{matrix} G-denotes\, \, Girls \\ X-denotes\, \, boys \\ \Rightarrow G\times G\times G\times G\times G\times G\times G\times G \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, Girls\, \, is\, \, 8!\, \, alternate \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, boys\, \, is\, \, 7! \\ \, \, \, \, \, \, \, after\, \, late \\ \Rightarrow Number\, \, of\, \, boys\, \, and\, \, girls\, \, sit\, \, alternate\, \, =8!7! \\ When\, \, first\, \, and\, \, fifteen\, \, chair\, \, are\, \, fixed\, \, and\,  \\ \, first\, \, chair\, \, \times G\times G\times G\times G\times G\times G\times G\times fifteen\, \, chair\, \, between\, \, any\, \, two\, \, boys \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \underline { 9{ C_{ 4 } }8!7! } \, \, \, Ans. \\  \end{matrix}$$
  • Question 5
    1 / -0
    The three digits in 10! are:
    Solution
    As we know that $$10!=1\times 2\times 3\times 4\times 5\times 6\times 7\times 8\times 9\times 10$$
    $$10!=10^2(3\times 4\times 6\times 7\times 8\times 9)$$
    $$10!=10^2(3^4\times 2^6\times 7)$$
    $$10!=10^2(81\times 64\times 7)$$
    The last three digit in $$10!$$ is $$800$$
    The correct option is A.

  • Question 6
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

  • Question 7
    1 / -0
    A is a set containing n elements. A  subset P of A is chosen. The set A is reconstructed by replacing the element of P.A subset Q of A is again chosen. The number of way of choosing P and Q so that P Q =$$\phi $$ is :- 
    Solution
    Let A = $${a_{1},a_{2},a_{3},....a_{n}}$$. For $$a_{1}$$ $$\epsilon $$ For $$a_{1} \epsilon $$A we have following choices:
    (i) $$a_{1} \epsilon $$ P and $$a_{1} \epsilon $$ Q
    (ii) $$a_{1} \epsilon $$P $$\notin $$ 
    (iii) $$_{1}\notin P and a_{1}\epsilon Q$$
    (Iv)$$_{1}\notin P and a_{1}\notin  Q$$
    Out of these only (Ii), and (iii)  and (iv) imply $$a_{1}\notin P\cap Q $$ therefore, the number of ways in which none of $$a_{1},a_{2}.....a_{n}$$ belong $$P\cap Q$$ is $$3^{n}$$.
  • Question 8
    1 / -0
    Find: $$6,25,62,123,(?),341$$
    Solution
    $$6=2^{3}-2=6$$
    $$25=3^{3}-2=25$$
    $$62=4^{3}-2=62$$
    $$123=5^{3}-2=123$$
    $$214=6^{3}-2=214$$
    $$341=7^3-2=341$$

    Missing term is $$214$$
  • Question 9
    1 / -0
    Let $$5 < n_1 < n_2 < n_3 < n_4$$ be integers such that $$n_1+n_2+n_3+n_4=35$$. The number of such distinct arrangements $$(n_1, n_2, n_3, n_4)$$.
    Solution
    $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+.....+{ n }_{ k }=R$$
    for this arrangement,
    No. of arrangement or distinct arrangements are $${ R+K-1 }_{ { C }_{ K-1 } }$$
    So, for $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+{ n }_{ 4 }=35$$
    No. of arrangements $$={ 35+4-1 }_{ { C }_{ 4-1 } }={ 38 }_{ { C }_{ 3 } }$$
  • Question 10
    1 / -0
    Select the missing number from the given responses ?

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now