Arranging the wages in ascending order, we obtain the following table:
S. No Wages (Rs.) S. No. Wages (Rs.) 1 120 16 400 2 170 17 420 3 210 18 440 4 240 19 440 5 260 20 450 6 270 21 470 7 300 22 480 8 320 23 480 9 330 24 490 10 330 25 500 11 330 26 520 12 330 27 550 13 350 28 580 14 370 29 620 15 380 30 680
We have, $$ n = 30$$
Lower Quartile:
$$\quad Q_1 =$$ Value of $$\left(\displaystyle\frac{n+1}{4}\right)^{th}$$ observation
$$\Rightarrow\quad Q_1 =$$ Value of $$\left(\displaystyle\frac{30+1}{4}\right)^{th}$$ observation
$$\Rightarrow\quad Q_1 =$$ Value of $$\left(7.75\right)^{th}$$ observation
$$\Rightarrow\quad
Q_1 =$$ Value of $$\left(7\right)^{th}$$ observation +
$$\displaystyle\frac{3}{4}$$(Value of $$8^{th}$$ observation - Value of
$$7^{th}$$ observation)
$$\Rightarrow \quad Q_1 = 300 + \displaystyle\frac{3}{4}(320 - 300) = 315$$
Middle Quartile (Median):
$$Q_2$$
= A.M. of $$\left(\displaystyle\frac{n}{2}\right)^{th}$$ and
$$\left(\displaystyle\frac{n}{2} + 1\right)^{th}$$ observation
$$\Rightarrow
\quad Q_2 = \displaystyle\frac{\mbox{value of } 15^{th} \mbox{
observation} + \mbox{value of } 16^{th} \mbox{ observation}}{2}$$
$$\Rightarrow \quad Q_2 = \displaystyle\frac{380 + 400}{2} = 390$$
Upper Quartile:
$$\quad Q_3 = $$ Value of $$3\left(\displaystyle\frac{n+1}{4}\right)^{th}$$ observation
$$\Rightarrow\quad Q_3 = $$ Value of $$3\left(\displaystyle\frac{30+1}{4}\right)^{th}$$ observation
$$\Rightarrow\quad Q_3 = $$ Value of $$23.25^{th}$$ observation
$$\Rightarrow\quad
Q_3 = $$ Value of $$23^{rd}$$ observation +
$$\displaystyle\frac{1}{4}($$ Value of $$24^{th}$$ Observation - Value
of $$23^{rd}$$ observation $$)$$
$$\Rightarrow\quad Q_3 = 480 + \displaystyle\frac{1}{4}(490 - 480) = 482.50$$
$$\therefore \quad Q_1+Q_2+Q_3 = 315+390+482.50 = 1187.50$$