Self Studies

Descriptive Statistics Test 23

Result Self Studies

Descriptive Statistics Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If a variable $$X$$ takes values $$0,1,2,....,n$$ with frequencies $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }\quad $$ respectively, then S.D. is equal to :
    Solution
    Here,  $$\displaystyle \mu1'$$ $$=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ $$\displaystyle $$
    and 
    $$\displaystyle \mu 2' $$$$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$  

    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1
    \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 

    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}  \mbox{or}  S.D = \sigma = \sqrt{\sigma^2} = \frac{\sqrt{n}}{2}$$
  • Question 2
    1 / -0
    If a variable $$x$$ takes values $$0,1,2,....n$$ with frequencies proportional to the binomial coefficients $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }$$, then mean of distribution is 
    Solution
    Here,  $$\displaystyle \mu1 '=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ 
    $$\displaystyle =\frac{n.2^{n-1}}{2^{n}}=\frac{n}{2}$$
    and 
    $$\displaystyle \mu 2'=\frac{1}{2^{n}}\sum_{0}^{n}\left\{ \left ( r-1 \right )+r \right
    \}^{n}C_{r}$$  
    $$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1 \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 
    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}$$
  • Question 3
    1 / -0
    The quartile deviation for the data
    x :
    2
    3
    4
    5
    6
    f :
    3
    4
    8
    4
    1
    is
    Solution
    $$x$$$$f$$Cumulative Frequency
    233
    347
    4815
    5419
    6120
    Total 20
    Here, $$n=20$$
    $$Q_1=(\dfrac{20+1}{4})^{th}observation$$
           $$=\dfrac{21}{4}=5.25^{th}observation$$
    So, $$Q_1=3$$

    $$Q_3=\dfrac{3(n+1)}{4})^{th} observation$$
           $$=\dfrac{63}{4}=15.75^{th} observation$$
    So, $$Q_3=5$$

    Quartile deviation $$=\dfrac{Q_3-Q_1}{2}$$
     $$=\dfrac{5-3}{2}=1$$
  • Question 4
    1 / -0
    The variance of the data:
    x:
    $$1$$
    $$a$$
    $${ a  }^{ 2 }$$
    ......
    $${ a }^{ n }$$
    f:
    $${ _{  }^{ n }{ C } }_{ 0 }$$
    $${ _{  }^{ n }{ C } }_{ 1 }$$
    $${ _{  }^{ n }{ C } }_{ 2 }$$
    ......
    $${ _{  }^{ n }{ C } }_{ n }$$
    is
    Solution
    $$ \displaystyle \bar { X } =\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } \\ \displaystyle =\frac { ^{ n }C_{ 0 }+a.^{ n }C_{ 1 }+{ a }^{ 2 }.^{ n }C_{ 2 }+....{ a }^{ n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } \\ \displaystyle =\frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } } $$
    .
    $$ \displaystyle S.D.=\sqrt { \frac { \sum { { f }_{ i }{ { x }_{ i } }^{ 2 } }  }{ \sum { { f }_{ i } }  } -{ \left( \frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  }  \right)  }^{ 2 } } \\ \displaystyle =\sqrt { \frac { ^{ n }C_{ 0 }+{ a }^{ 2 }.^{ n }C_{ 1 }+{ a }^{ 4 }.^{ n }C_{ 2 }+....{ a }^{ 2n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } -{ \left[ \frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } }  \right]  }^{ 2 } } \\ \displaystyle \sqrt { \frac { { \left( 1+{ a }^{ 2 } \right)  }^{ n } }{ { 2 }^{ n } } -{ \left( \frac { 1+a }{ 2 }  \right)  }^{ 2n } } $$

    $$Variance = (S.D)^2$$
  • Question 5
    1 / -0

    Directions For Questions

    The data given below shows how many letters were collected from a post box on each of the days of a certain week.

    Monday $$\Box\Box\Box\Box\Box\Box\Box$$
    Tuesday $$\Box\Box\Box\Box\Box$$
    Wednesday $$\Box\Box\Box\Box$$
    Thursday $$\Box\Box\Box\Box\Box\Box$$
    Friday $$\Box\Box\Box\Box\Box\Box\Box\Box$$
    Saturday $$\Box\Box\Box$$
    $$\Box = 10$$ letters

    ...view full instructions

    How many less letters were collected on Wednesday than on Tuesday?
    Solution
    Given that one square box represents $$10$$ letters.
    On Tuesday there are 5 boxes.
    Therefore, number of letters collected on Tuesday are $$10\times5=50$$
    On Wednesday there are 4 boxes.
    Therefore, number of letters collected on Wednesday are $$10\times4=40$$

    There are $$50-40=10$$ letters less on Wednesday than on Tuesday.
  • Question 6
    1 / -0
    The S.D. of the following frequency distribution is 
    Class0-1010-2020-3030-40
    $$\displaystyle f_{i}$$1342
    Solution
    Class$$x_i$$$$f_i$$$$u_i=\dfrac{x_i-a}{h}$$$$f_iu_i$$$$f_iu_i^2$$
    0-1051-2-24
    10-20153-1-33
    20-30254000
    30-40352122
    $$N=10$$$$\sum f_iu_i=-3$$$$\sum f_iu_i^2=9$$
    $$\displaystyle \sigma =h\sqrt{\frac{ \Sigma f_{1}u_{1}^{2}}{N}-\left ( \frac{\Sigma f_{1}u_{1}}{N} \right )^{2}}$$

    $$\displaystyle =10\sqrt{\frac{9}{10}-\left ( \frac{-3}{10} \right )^{2}}=9$$
  • Question 7
    1 / -0
    The adjoining diagram illustrates the information collected about the number
    of brothers of the boys in a certain group. What is the total number of boys in
    this group?

    Solution
    From the figure,
    there are $$2$$ boys who have $$1$$ brother, thus total $$2$$ boys
    there are $$5$$ boys who have $$2$$ brothers, thus total $$10$$ boys
    there are $$4$$ boys who have $$3$$ brothers, thus total $$12$$ boys
    there are $$7$$ boys who have $$4$$ brothers, thus total $$28$$ boys
    there are $$3$$ boys who have $$5$$ brothers, thus total $$15$$ boys
    there are $$1$$ boys who have $$6$$ brothers, thus total $$6$$ boys
    Hence, total number of boys $$= 2 + 10 + 12 + 28 + 15 + 6 = 73$$
  • Question 8
    1 / -0
    The horizontal line in a bar graph is called:
    Solution
    In the Cartesian coordinate system, the horizontal reference line is called $$x$$-axis.
    Therefore, the horizontal line in a bar graph is called $$x$$-axis.
    Hence, option $$A$$ is correct.
  • Question 9
    1 / -0
    The incomplete pictograph shows the number of stamps(1 ticket = 4 stamps) collected by four pupils:
    The missing tickets represents the number of stamps collected by Anjali.
    Then how many tickets collected by Anjali?

    Solution
    From the given pictograph, the total tickets coolected by Lata, Kalyan, Vaishnavi are $$13$$.
    Given that one ticket symbol represents $$4$$ stamps.
    Therefore, total number of stamps collected by  Lata, Kalyan, Vaishnavi are $$13\times4=52$$.
    Given that, total number of stamps collected by four pupils is $$80$$.

    Therefore the number of stamps collected by Anjali = Total number of stamps collected by four pupil - number of stamps collected by three pupils (excluding Anjali) $$=80-52=28$$

    Hence, the number of tickets collected by Anjali are $$ \dfrac{28}4=7$$

  • Question 10
    1 / -0
    Answer the following question by reading the given pictograph.
    Number of TV sets sold in the year 2005 is

    Solution
    From the given pictograph, $$2005$$ has one tv symbol.
    Given that one symbol represents $$500$$ tv sets.
    Therefore the $$2005$$ has $$1\times500=500$$ tv sets.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now