Self Studies

Descriptive Statistics Test 32

Result Self Studies

Descriptive Statistics Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Variance of the first $$11$$ natural numbers is:
    Solution
    Sum of first $$n$$ natural numbers is $$\dfrac {n^2-1}{12}$$
    $$=\dfrac {11^2-1}{12}$$
    $$=\dfrac {120}{12}$$
    $$=10$$
    Thus, variance is $$\sqrt {\dfrac {n^2-1}{12}}$$ $$=\sqrt {10}$$.
  • Question 2
    1 / -0
    If $$x $$ is multiplied by $$k$$ then $$\sigma$$  changes to
    Solution
    By the properties of standard deviation,
    $$\sigma(kx)=|k|\sigma(x)$$ 
    Therefore, by multiplying the $$x$$ by $$k$$, SD changes to $$k\sigma$$ 
  • Question 3
    1 / -0
    Standard Deviation of n observations $$a_1, a_2, a_3 .....a_n$$ is $$\sigma$$ Then the standard deviation of the observations $$\lambda a_1, \lambda a_2, ..., \lambda a_n$$ is
    Solution
    Let the mean of original data is $$\mu$$
    Then mean of observation if all the terms are multiplied by the constant $$\lambda$$ will be $$\lambda \mu$$
    If $$\sigma$$ be the standard deviation of original observation , then
    $$\sigma=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (x_i-\mu)^2 }$$
    Now let the standard deviation of new observation is $$\sigma'$$, then
    $$\sigma'=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (\lambda x_i-\lambda\mu)^2 }$$
    $$=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n \lambda^2( x_i-\mu)^2 }$$
    $$=|\lambda|\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n( x_i-\mu)^2 }=|\lambda |\sigma$$
    Note that: standard deviation can never be negative 
  • Question 4
    1 / -0
    The standard deviation of $$a,a+d,a+2d,...,a+{2}{n}d$$ is
    Solution
    Series is $$a, a+d, a+2d,\cdots, a+2nd$$
    Total number of terms: $$N = 2n+1$$
    Sum of the series: $$S = \cfrac{2n+1}2(a+a+2nd) = (2n+1)(a+nd)$$
    Mean of the data: $$\bar{x} = \cfrac SN = \cfrac{(2n+1)(a+nd)}{(2n+1)} = a+nd$$ 
    Standard Deviation: $$s.d. = \sqrt{\cfrac{\displaystyle\sum_{i=1}^{2n+1} (x_i - \bar x)^2}{N}}$$
    $$s.d. = \sqrt{\cfrac{2(1^2+2^2+\cdots+n^2)}{(2n+1)} = \cfrac{2\times\dfrac{n(n+1)(2n+1)}{6}}{(2n+1)}d^2}$$
    $$s.d. = \sqrt{\cfrac{n(n+1)}{3}}d$$
  • Question 5
    1 / -0
    If the variance of a data is $$12.25$$, then the standard deviation is
    Solution
    $$S.D=\sqrt{variance}$$
    $$\Rightarrow S.D=\sqrt{12.25}$$
    $$\Rightarrow S.D=3.5$$
    Option A is correct.
  • Question 6
    1 / -0
    Find the variance of the following distribution.
    Class interval
    $$20-24$$
    $$25-29$$
    $$30-34$$
    $$35-39$$
    $$40-44$$
    $$45-49$$
    Frequency
    $$15$$
    $$25$$
    $$28$$
    $$12$$
    $$12$$
    $$8$$
    Solution
    $$Class$$ $$Mid-point$$
    $$(x)$$ 
    $$Frequency$$
    $$(f)$$ 
    $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$ 
    $$20-24$$ $$22$$ $$15$$ $$330$$ $$-10.25$$ $$105.0625$$ $$1575.9375$$ 
    $$25-29$$ $$27$$ $$25$$ $$675$$ $$-5.25$$ $$27.5625$$ $$689.0625$$ 
    $$30-34$$ $$32$$ $$28$$ $$896$$ $$-0.25$$ $$0.0625$$ $$1.75$$ 
    $$35-39$$ $$37$$ $$12$$ $$444$$ $$4.75$$ $$22.5625$$ $$270.75$$ 
    $$40-44$$ $$42$$ $$12$$ $$504$$ $$9.75$$ $$95.0625$$ $$1140.75$$ 
    $$45-49$$ $$47$$ $$8$$ $$376$$ $$14.75$$ $$217.5625$$ $$1740.5$$ 
      $$\sum f=100$$ $$\sum xf=3225$$   $$\sum(x-\overline{x})^2f=5418.75$$  
    $$\Rightarrow$$  $$Mean(\overline{x})=\dfrac{\sum xf}{\sum f}=\dfrac{3225}{100}=32.25$$
    $$\Rightarrow$$  $$Variance(\sigma^2)=\dfrac{\sum(x-\overline{x})^2f}{\sum f}=\dfrac{5418.75}{100}=54.18$$
  • Question 7
    1 / -0
    The mean and the variance of $$10$$ observations are given to be $$4$$ and $$2$$ respectively. If every observation is multiplied by $$2$$, the mean and the variance of the new series will be respectively.
    Solution
    Mean is summation of all observations divided by number of observation and hence, would be multiplied by $$2$$ due to linearity. Hence, the new mean is $$8$$.
    Variance is sum of squares of each observation subtracted by the mean. Hence, due to squared dependence, it will be quadrupled to get $$8$$.
    Hence, both mean and variance are $$8$$.
  • Question 8
    1 / -0

    Directions For Questions

    The mean and standard deviation of $$100$$ items are $$50, 5$$ and that of $$150$$ items are $$40, 6$$ respectively.

    ...view full instructions

    What is the combined standard deviation of all 250 items ?
    Solution
    Here $$n_1=100,\bar{x}_1=50, s_1=5,n_2=150,\bar{x}_2=40,s_2=6$$

    $$\therefore \sigma=\sqrt{\dfrac{n_1s_1^2+n_2s_2^2}{n_1+n_2}+\dfrac{n_1n_2(\bar{x}_1-\bar{x}_2)^2}{(n_1+n_2)^2}}$$

           $$=\sqrt{\dfrac{100(5)^2+150(6)^2}{100+150}+\dfrac{(100)(150)(50-40)^2}{(100+150)^2}}$$

           $$=\sqrt{\dfrac{158}{5}+24}$$
     
          $$=\sqrt{31.6+24}$$

          $$=\sqrt{55.6}$$

          $$=7.45$$

    $$\therefore \sigma=7.45$$
  • Question 9
    1 / -0
    Calculate the standard deviation of the following data.
    x
    $$3$$
    $$8$$
    $$13$$
    $$18$$
    $$23$$
    f
    $$7$$
    $$10$$
    $$15$$
    $$10$$
    $$8$$
    Solution
    $$x$$ $$f$$ $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$  
    $$3$$ $$7$$ $$21$$ $$-10.2$$ $$104.04$$ $$728.28$$ 
    $$8$$ $$10$$ $$80$$ $$-5.2$$$$27.04$$ $$270.4$$ 
    $$13$$ $$15$$ $$195$$ $$-0.2$$ $$0.04$$ $$0.6$$ 
    $$18$$ $$10$$ $$180$$ $$4.8$$ $$23.04$$ $$230.4$$ 
    $$23$$ $$8$$ $$184$$ $$9.8$$ $$96.04$$ $$768.32$$ 
     $$\sum f=50$$ $$\sum xf=660$$   $$\sum(x-\overline{x})^2=1998$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum xf}{\sum f}=\dfrac{660}{50}=13.2$$
    Now, calculate standard deviation :
    $$S=\sqrt{\dfrac{(x-\overline{x})^2}{\sum f}}=\sqrt{\dfrac{1998}{50}}=\sqrt{39.96}=6.32$$
  • Question 10
    1 / -0
    Let X denote the number of scores which exceed 4 in 1 toss of a symmetrical die. Consider the following statements :
    1. The arithmetic mean of X is 6.
    2. The standard deviation of X is 2.
    Which of the above statements is/are correct ?
    Solution
    The only possible favorable outcomes are $$5$$ and $$6$$. Hence, the arithmetic mean of $$X$$ is 5.5.
    The standard deviation of $$X=\dfrac{1}{2}((6-5.5)^2+(5-55)^2)=0.25$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now