Self Studies

Descriptive Statistics Test 33

Result Self Studies

Descriptive Statistics Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The variance of numbers $$x_1, x_2, x_3,..... x_n$$ is V. Consider the following statements : 
    1. If every $$x_1$$, is increased by 2, the variance of the new set of numbers is V.
    2. If the numbers $$x_1$$ is squared, the variance of the new set is $$V^2$$.
    Which of the following statements is/are correct ?
    Solution
    In case 1, a deterministic value of 2 units is being added to every $$x_i$$ and hence, the variance of the set remains unchanged as $$V$$. New variance would be $$\dfrac{1}{n}\sum\left(x_i+2-\left(\sum\dfrac{x_i+2}{n}\right)\right)=\dfrac{1}{n}\sum\left(x_i-\sum\dfrac{x_i}{n}\right)=V$$
    In case 2, each $$x_i$$ is squared and hence, the mean becomes $$\dfrac{1}{n}\sum x_i^2 $$. Hence, the new variance is $$\dfrac{1}{n}\sum\left( x_i^2-\dfrac{1}{n}\sum x_i^2\right)^2$$
    and not $$V^2=\dfrac{1}{n^2}\sum\left( x_i-\dfrac{1}{n}\sum x_i\right)^4$$.
  • Question 2
    1 / -0
    Calculate the standard deviation of the first $$13$$ natural numbers.
    Solution
    $$\Rightarrow$$  $$1st$$ $$13$$ natural numbers are $$1,2,3,4,5,6,7,8,9,10,11,12,13.$$
    $$\sum x=\dfrac{n(n+1)}{2}$$
             $$=\dfrac{13(13+1)}{2}$$
             $$=\dfrac{13\times 14}{2}$$
    $$\therefore$$  $$\sum x=91$$
    Now, $$\sum x^2=\dfrac{n(n+1)(2n+1)}{6}$$
                        $$=\dfrac{13\times 14\times 27}{6}$$
    $$\therefore$$  $$\sum x^2=819$$
    $$\Rightarrow$$  $$SD=\sqrt{\dfrac{\sum x^2}{n}-\left(\dfrac{\sum x}{n}\right)^2}$$
                  $$=\sqrt{\dfrac{819}{13}-\left(\dfrac{91}{13}\right)^2}$$
                  $$=\sqrt{63-49}$$
                  $$=\sqrt{14}$$ 
                  $$=3.74$$
  • Question 3
    1 / -0
    The variance of first '$$n$$' natural number is
    Solution
    By using formula of variance, we have
    $${ \sigma  }^{ 2 }=\dfrac { 1 }{ n } \displaystyle\sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } -{ \left( \dfrac { 1 }{ n } \displaystyle\sum _{ i=1 }^{ n }{ { x }_{ i } }  \right)  }^{ 2 }$$
    $$=\dfrac { 1 }{ n } \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+\cdots +{ n }^{ 2 } \right) -{ \left( \dfrac { 1 }{ n } \left( 1+2+\cdots +n \right)  \right)  }^{ 2 }$$
    $$=\dfrac { 1 }{ n } \cdot \dfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } -\dfrac { 1 }{ { n }^{ 2 } } \cdot { \left[ \dfrac { n\left( n+1 \right)  }{ 2 }  \right]  }^{ 2 }$$
    $$=\dfrac { \left( n+1 \right) \left( 2n+1 \right)  }{ 6 } -\dfrac { { \left( n+1 \right)  }^{ 2 } }{ 4 }$$
    $$ =\dfrac { { n }^{ 2 }-1 }{ 12 } $$
  • Question 4
    1 / -0
    Calculate the standard deviation of the following data.
    $$10, 20, 15, 8, 3, 4$$
    Solution
    $$\Rightarrow$$  The given numbers  are $$3,4,8,10,15,20$$.
    $$\Rightarrow$$  $$\overline{X}=\dfrac{3+4+8+10+15+20}{6}=10$$

     $$X$$$$X-\overline{X}$$ $$(X-\overline{X})^2$$ 
    $$3$$ $$-7$$ $$49$$ 
    $$4$$ $$-6$$ $$36$$ 
    $$8$$ $$-2$$ $$4$$ 
    $$10$$ $$0$$ $$0$$ 
    $$15$$ $$5$$ $$25$$ 
    $$20$$ $$10$$ $$100$$ 
      $$\sum (X-\overline{X})^2=214$$ 
    $$\Rightarrow$$  $$S=\sqrt{\dfrac{(X-\overline{X})^2}{N}}$$
             $$=\sqrt{\dfrac{214}{6}}$$
             $$=\sqrt{35.66}$$
             $$=5.97$$

  • Question 5
    1 / -0
    What is the ratio of the total sales of branch B2 for both years to the total sales of branch B4 for both years?

    Solution
    Total sale of $$B2=75+65=140$$
    Total sale of $$B4=85+95=180$$
    Ratio of sales of $$B2$$ and $$B4$$ $$=\dfrac{140}{180}=\dfrac{7}{9}$$
    So option $$D$$ is correct.
  • Question 6
    1 / -0
    If the mean of the numbers $$a,b,8,5,10$$ is $$6$$ and their variance is $$68$$, then $$ab$$ is equal to
    Solution
    Given,
    $$\cfrac { a+b+8+5+10 }{ 5 } =6$$
    $$\Rightarrow a+b+c+23=30$$
    $$\Rightarrow a+b=7....(i)$$
    and $$\quad \cfrac { \sum { { \left( { x }_{ 1 }-\overline { x }  \right)  }^{ 2 } }  }{ n } ={ \sigma  }^{ 2 }\quad $$
    $$\cfrac { { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+4+1+16 }{ 5 } =\cfrac { 34 }{ 5 } \quad $$
    $$\Rightarrow { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+21=34\quad $$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }-84+93=34\quad \left[ \because a+b=7 \right] $$
    $$\quad \Rightarrow { a }^{ 2 }+{ b }^{ 2 }=25...(i)\quad $$
    From Eq.(i)
    $$\Rightarrow { (a+b) }^{ 2 }={ 7 }^{ 2 }$$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }+2ab=49$$
    $$\Rightarrow 25+2ab=49$$ (From Eq.(ii))
    $$\Rightarrow 2ab=24\Rightarrow ab=12\quad $$
  • Question 7
    1 / -0
    If the median of the data 6,7,x-2,x,18,21 written in ascending order is 16, then the variance of that data is 
    Solution
    $$M=\dfrac{x-2+x}{2}=16$$

    Variance = $$\dfrac{1}{n}\sum (x_i-\overline{x})^{2}$$
    Required variance=$$31\dfrac{1}{3}$$
  • Question 8
    1 / -0
    For the data set below, which value is in the 75th percentile?
    $$1, 3, 3, 4, 6, 7, 7, 7, 8, 9, 9, 10, 12, 15, 16, 17$$
    Solution
    $$1, 3, 3, 4, 6, 7, 7, 7, 8, 9, 9, 10, 12, 15, 16, 17$$
    Logic:- first quartile lies halfway between the lowest valve of the Median & the third Quartile lies halfway between the Median & the largest value.
    $$N=16$$
    Third quartile or $$75$$ percentile
    $$=\dfrac{3(n+1)}{4}$$th term
    $$=\dfrac{3\times 17}{4}=12.75^{th}$$ term
    $$=12^{th}$$ term $$+0.75\times(13^{th}$$ term$$-12^{th}$$ term$$)$$
    $$=10+0.75\times (12-10)$$
    $$=10+0.75\times 2$$
    $$=11.5\approx 12$$.

  • Question 9
    1 / -0

    Directions For Questions

    The graph gives expenditure of a company in the years $$2003,2004$$ and $$2005$$ for the month January to July. Read the graph and answer the questions.

    ...view full instructions

    What is the total expenditure (Rs. in lakhs) of the company during the period January to July in the year 2003?

    Solution
    Required expenditure of the company
    $$=600+500+500+650+500+600+600$$
    $$3950$$ lakh
  • Question 10
    1 / -0
    If the variance of $$1, 2, 3, 4, 5, ..., x$$ is $$10$$, then the value of $$x$$ is
    Solution
    We know that, the variance of first $$x$$ natural number is
    $$\text{Var} (x) = \dfrac {x^{2} - 1}{12} = 10$$     ....(given)
    $$\Rightarrow x^{2} = 120 + 1 = 121$$
    $$\Rightarrow  x = 11$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now