$$Maximum\,load$$ $$No.\,of\,cables$$ $$Class\,boundaries$$ $$Cumulative\,frequency$$ $$9.3-9.7$$ $$2$$ $$9.25-9.75$$ $$2$$ $$9.8-10.2$$ $$5$$ $$9.75-10.25$$ $$7$$ $$10.3-10.7$$ $$12$$ $$10.25-10.75$$ $$19$$ $$10.8-11.2$$ $$17$$ $$10.75-11.25$$ $$36$$ $$11.3-11.7$$ $$14$$ $$11.25-11.75$$ $$50$$ $$11.8-12.2$$ $$6$$ $$11.75-12.25$$ $$56$$ $$12.3-12.7$$ $$3$$ $$12.25-12.75$$ $$59$$ $$12.8-13.2$$ $$1$$ $$13.25$$ $$60$$
$$Q_1:$$
Value of $$\dfrac{n}{4}^{th}=\dfrac{60}{4}=15^{th}$$
$$\therefore$$ $$Q_1$$ lies in class $$10.25-10.75$$
Where, $$l=10.25,\,h=0.5,\,f=12,\,cf=7$$
$$Q_1=l+\dfrac{h}{f}\left(\dfrac{n}{4}-c.f.\right)$$
$$=10.25+\dfrac{0.5}{12}(15-7)$$
$$=10.25+0.33$$
$$=10.58$$
$$Q_3:$$
Value of $$\dfrac{3n}{4}^{th}item=\dfrac{3\times 60}{4}=45^{th}item$$
$$\therefore$$ $$Q_3$$ lies in class $$11.25-11.75$$
Here, $$l=11.25,\,h=0.5,\,f=14,\,\dfrac{3n}{4}=45$$ and $$cf=36$$
$$Q_3=l+\dfrac{h}{f}\left(\dfrac{3n}{4}-c.f\right)$$
$$=11.25+\dfrac{0.5}{14}(45-36)$$
$$=11.25+0.32$$
$$=11.57$$
$$\Rightarrow$$ Now, Quartile deviation $$=\dfrac{Q_3-Q_1}{2}$$
$$=\dfrac{11.57-10.58}{2}$$
$$=\dfrac{0.99}{2}$$
$$=0.495$$
$$\Rightarrow$$ Coefficient of Quartile Deviation $$=\dfrac{Q_3-Q_1}{Q_3+Q_1}$$
$$=\dfrac{11.57-10.58}{11.57+10.58}$$
$$=\dfrac{0.99}{22.15}$$
$$=0.045$$