Self Studies

Set Theory Test 1

Result Self Studies

Set Theory Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let A,BA, B and CC be sets such that ϕ=ABC\phi = A\cap B \subseteq C. Then which of the following statements is not true?
    Solution
    for A=C,AC=ϕA = C, A - C = \phi
    ϕB\Rightarrow \phi \subseteq B
    But A⊈BA\not {\subseteq} B
    \Rightarrow option 11 is NOT true
    Let xϵ(Cxϵ(CA)(CB)x \epsilon (C x \epsilon (C \cup A)\cap (C\cup B)
    xϵ(CA)\Rightarrow x\epsilon (C\cup A) and xϵ(CB)x \epsilon (C\cup B)
    (xϵC\Rightarrow (x \epsilon C or xϵA)x \epsilon A) and (xϵC(x\epsilon C or xϵB)x \epsilon B)
    xϵC\Rightarrow x \epsilon C or xϵ(AB)x \epsilon (A\cap B)
    xϵC\Rightarrow x \epsilon C or xϵCx\epsilon C (as ABC)A\cup B\subseteq C)
    xϵC\Rightarrow x \epsilon C
    (CA)(CB)....(1)\Rightarrow (C \cup A)\cap (C\cup B)\subseteq ....(1)
    Now xϵCxϵ(CA)x \epsilon C\Rightarrow x \epsilon (C\cup A) and xϵ(CB)x \epsilon (C \cup B)
    xϵ(CA)(CB)\Rightarrow x\epsilon (C\cup A)\cap (C\cup B)
    C(CA)(CB).....(2)\Rightarrow C\subseteq (C\cup A)\cap (C \cup B) .....(2)
    \Rightarrow from (1) and (2)
    C=(CA)(CB)C = (C\cup A)\cap (C\cup B)
    \Rightarrow option 2 is true
    Let xϵAx \epsilon A and xϵ̸Bx \not {\epsilon} B
    xϵ(AB)\Rightarrow x \epsilon (A - B)
    xϵC\Rightarrow x \epsilon C (as ABC)A - B \subseteq C)
    Let xϵAx \epsilon A and xϵBx \epsilon B
    xϵ(AB)\Rightarrow x \epsilon (A\cap B)
    xϵC\Rightarrow x \epsilon C (as ABC)A\cap B\subseteq C)
    Hence xϵAxϵCx \epsilon A \Rightarrow x \epsilon C
    AC\Rightarrow A \subseteq C
    \Rightarrow Option 3 is true
    as C(AB)C\supseteq (A\cap B)
    BC(AB)\Rightarrow B\cap C\supseteq (A\cap B)
    as ABϕA\cap B\neq \phi
    BCϕ\Rightarrow B\cap C \neq \phi
    \Rightarrow Option 4 is true.

  • Question 2
    1 / -0
    Let SS be a non-empty subset of RR. Consider the following statement:
    pp : There is a rational number xx  such that x>0x > 0.
    which of the following statements is the negation of the statement P ? 
    Solution
    P\mathrm{P}: there is a rational number xS\mathrm{x}\in \mathrm{S} such that x>0\mathrm{x}>0
    P\sim \mathrm{P}: Every rational number xS\mathrm{x}\in \mathrm{S} satisfies x0\mathrm{x}\leq 0 
    Hence, option 'B' is correct.
  • Question 3
    1 / -0
    The set A={x:xx2=16and2x=6} \displaystyle A=\left\{ x:x\in { x }^{ 2 }=16\quad and\quad 2x=6 \right\}  equals:
    Solution
    Since, x2=16x=±4\displaystyle { x }^{ 2 }=16\Rightarrow x=\pm 4
    and 2x=6x=3\displaystyle 2x=6\Rightarrow x=3
    Hence, no value of xx is satisfied.
    A=ϕ \displaystyle \therefore A=\phi 
  • Question 4
    1 / -0

    Let nn be a fixed positive integer. Let a relation RR defined on II (the set of all integers) as follows: aRbaRb iff n/(ab)n/(a-b), that is, iff aba-b is divisible by nn, then, the relation RR is

    Solution
    RR is reflexive since for any integer aa we have aa=0a-a=0 and 00 is divisible by nn.
    Hence, aRaaIaRa\quad \forall a\in I.
    RR is symmetric, let aRbaRb.
    Then by definition of RR, ab=nka-b=nk where kIk\in I.
    Hence ba=(k)nb-a=(-k)n where kI-k\in I and so bRabRa.
    Thus we have shown that aRbbRaaRb\Rightarrow bRa.
    RR is transitive, let aRbaRb and bRcbRc.
    Then by definition of RR, we have ab=k1na-b={ k }_{ 1 }n and bc=k2nb-c={ k }_{ 2 }n, where k1,k2I{ k }_{ 1 },{ k }_{ 2 }\in I.
    It then follows that
    ac=(ab)+(bc)=k1n+k2n=(k1+k2)na-c=\left( a-b \right) +\left( b-c \right) ={ k }_{ 1 }n+{ k }_{ 2 }n=\left( { k }_{ 1 }+{ k }_{ 2 } \right) n
    where k1+k2I{ k }_{ 1 }+{ k }_{ 2 }\in I
  • Question 5
    1 / -0
    If X == (multiples of 2), Y == (multiples of 5), Z == (multiples of 10), then X (Y Z)X \cap  ( Y \cap  Z ) is equal to
    Solution
     WecanwritethegivensetsasX={2,4,6,8,10,18,20,28,30,}Y={5,10,15,20,3040}Z={10,20,30,40,}YZ={10,20,30,}X(YZ)={10,20,30,}=ZX(YZ)=Z(Ans) We\quad can\quad write\quad the\quad given\quad sets\quad as\quad \\ X=\quad \left\{ 2,4,6,8,10,-----18,20,----28,30,---- \right\} \\ Y=\quad \left\{ 5,10,15,20,----30----40---- \right\} \\ Z=\quad \left\{ 10,20,30,40,----- \right\} \\ \therefore \quad Y\cap Z=\left\{ 10,20,30,---- \right\} \\ \therefore \quad X\cap \left( Y\cap Z \right) =\left\{ 10,20,30,----- \right\} =Z\\ \therefore \quad X\cap \left( Y\cap Z \right) =Z\quad \quad (Ans)
  • Question 6
    1 / -0
    A ϕ=\bigcup \phi =
    Solution
    We've,
    AϕA\cup \phi
    =A=A. [ Using direct formula (consistency property), since ϕA\phi \subset A]
  • Question 7
    1 / -0

    Suppose A1,A2,...,A30{ A }_{ 1 },{ A }_{ 2 },...,{ A }_{ 30 } are thirty sets, each with five elements and B1,B2,...,B30{ B }_{ 1 },{ B }_{ 2 },...,{ B }_{ 30 } are nn sets ecah with three elements. Let  i=130Ai=j=1nBj=S\displaystyle \bigcup _{ i=1 }^{ 30 }{ { A }_{ i }= } \bigcup _{ j=1 }^{ n }{ { B }_{ j } } =S

    If each element of SS belongs to exactly ten of the Ais{ A }_{ i }'s and exactly none of the Bjs{ B }_{ j }'s then n=n=

    Solution
    Given Ai{ A }_{ i }'s are thirty sets with five elements each, so  i=130n(Ai) =5×30=150\displaystyle \sum _{ i=1 }^{ 30 }{ n\left( { A }_{ i } \right)  } =5\times 30=150   ...(1)
    If there are mm distinct elements in SS and each element of SS belongs to exactly 1010 of the Ai{ A }_{ i }'s, we have
     i=130n(Ai) =10m\displaystyle \sum _{ i=1 }^{ 30 }{ n\left( { A }_{ i } \right)  } =10m   ...(2)
    \therefore from (1) and (2), we get 10m=150m=1510m=150\Rightarrow m=15   ...(3)
    Similarly  j=130n(Bj) =3n\displaystyle \sum _{ j=1 }^{ 30 }{ n\left( { B }_{ j } \right)  } =3n and  j=130n(Bj) =9m\displaystyle \sum _{ j=1 }^{ 30 }{ n\left( { B }_{ j } \right)  } =9m
    3n=9m 9m3=3m=3×15=45\therefore 3n=9m \displaystyle \Rightarrow \frac { 9m }{ 3 } =3m=3\times 15=45   (from (3))
    Hence, n=45n=45

  • Question 8
    1 / -0
    In a locality two-thirds of the people have cable TV one-fifth have Dish TV and one-tenth have both What is the fraction of people having either cable TV or Dish TV?

    Solution
    Fraction of people who watch cable only =(23110)=1730\displaystyle =\left ( \frac{2}{3}-\frac{1}{10} \right )=\frac{17}{30}
    Fraction of people who watch Dish TV only =(15110)=110\displaystyle =\left ( \frac{1}{5}-\frac{1}{10} \right )=\frac{1}{10}
     \displaystyle\therefore Fraction of people who watch either cable of Dish TV =1730+110=2030=23\displaystyle =\frac{17}{30}+\frac{1}{10}=\frac{20}{30}=\frac{2}{3}
  • Question 9
    1 / -0
    Let P=P = Set of all integral multiples of 33 ; Q=Q = Set of integral multiples of 44 ; R=R = Set of all integral multiples of 66. Consider the following relations :
    11 PQ=R\displaystyle P\cup Q=R
    2.2. PR\displaystyle P\subset R
    3.3. R(PQ)\displaystyle R\subset \left ( P\cup Q \right )
    Which of the relations given above is/are correct ?
    Solution
    Given that P ={3,6,9,12,15,18,21,...}\{3, 6, 9, 12, 15, 18, 21,...\}
        Q = {4,8,12,16,20,...}\{4, 8, 12, 16, 20,...\}
        R = {6,12,18,...}\{6, 12, 18,...\}
    Considering the choices given :
    1.  P \displaystyle \cup  Q = {3,4,6,8,9,12,16,18,...}\{3, 4, 6, 8, 9, 12, 16, 18,...\} \displaystyle \neq  R
    2.  All the element of P are not in R so P \displaystyle \nsubseteq  R
    3.  P \displaystyle \cup  Q = {3,4,6,8,9,12,15,16,18,...}\{3, 4, 6, 8, 9, 12, 15, 16, 18, ...\}
    \displaystyle \Rightarrow  All the element of R are in P \displaystyle \cup  Q 
    \displaystyle \Rightarrow R \displaystyle \subset  (P\displaystyle \cup Q)
  • Question 10
    1 / -0
    Given, universal set = {x  ϵ  Zx \,\,\epsilon\,\, Z : 6<x6- 6 < x \leq 6}, N = {nn : nn is a non-negative number} and P = {xx : xx is a nonpositive number}. Find :PP'
    Solution
    Universal set includes {5,4,3,2,1,0,1,2,3,4,5,6}\{-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}

    P={5.4.3,2,1,0}\{-5.-4.-3,-2,-1,0\}.

    Hence P' only has the elements in option B. It does not contain 0.
    P'={1,2,3,4,5,6}\{1,2,3,4,5,6\}.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now