Step 1: Find m {\textbf{Step 1: Find m}} Step 1: Find m
For m, {\text{For m,}} For m,
First we select any 5 digits from 0,1,2, . . . ,9 {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}}
First we select any 5 digits from 0,1,2, ... ,9
Number of ways = 10 C 5 {\text{Number of ways =
}}{}^{10}{{\text{C}}_5} Number of ways = 10 C 5
Now after selection there is only 1 way to arrange these selected digits, i.e., in descending order. {\text{Now after selection there is only 1 way
to arrange these selected digits, i}}{\text{.e}}{\text{., in descending
order}}{\text{.}} Now after selection there is only 1 way to arrange these selected digits, i .e ., in descending order .
Therefore m = 10 C 5 × 1 = 10 C 5 {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{ 1 = }}{}^{10}{{\text{C}}_5} Therefore m = 10 C 5 × 1 = 10 C 5
Step 2: Find n {\textbf{Step 2: Find n}} Step 2: Find n
For n,First we select any 5 digits from 1,2, . . . ,9 {\text{For n,First we select any 5 digits
from 1,2,}}...{\text{,9}} For n,First we select any 5 digits from 1,2, ... ,9
We can’t select zero as first digit because then the number won’t be a 5 - digit number. {\text{We can't select zero as first digit because then the number won't be a 5 - digit number}}{\text{.}} We can’t select zero as first digit because then the number won’t be a 5 - digit number .
Therefore number of ways = 9 C 5 {\text{Therefore number of ways = }}{}^9{{\text{C}}_5} Therefore number of ways = 9 C 5
⇒ n = 9 C 5 × 1 = 9 C 5 \Rightarrow {\text{n =
}}{}^9{{\text{C}}_5}\times{\text{ 1 = }}{}^9{{\text{C}}_5} ⇒ n = 9 C 5 × 1 = 9 C 5
⇒ m - n = 10 C 5 - 9 C 5 \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{
- }}{}^9{{\text{C}}_5} ⇒ m - n = 10 C 5 - 9 C 5
We know that, n C r + n C r − 1 = n + 1 C r {\text{We know that,}}{}^n{{\text{C}}_r}{\text{
+ }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r} We know that, n C r + n C r − 1 = n + 1 C r
⇒ n + 1 C r - n C r = n C r − 1 \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{
- }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}} ⇒ n + 1 C r - n C r = n C r − 1
⇒ 10 C 5 - 9 C 5 = 9 C 4 \Rightarrow {}^{10}{{\text{C}}_5}{\text{ -
}}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4} ⇒ 10 C 5 - 9 C 5 = 9 C 4
Hence, m - n = 9 C 4 {\text{Hence, m - n = }}{}^9{{\text{C}}_4} Hence, m - n = 9 C 4
Hence, the correct answer is option A {\textbf{Hence, the correct
answer is option A}} Hence, the correct answer is option A