Self Studies

Numerical Applications Test 51

Result Self Studies

Numerical Applications Test 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    It takes pump (A) 44 hours to empty a swimming pool. It takes pump (B) 66 hours to empty the same swimming pool. If the two pumps are started together, at what time will the two pumps have emptied 5050% of the water in the swimming pool?
    Solution

    Work efficiency of pump A in emptying pool = 14\dfrac{1}{4} per hour

    Work efficiency of pump B in emptying pool = 16\dfrac{1}{6} per hour

    \therefore work done by A and B together = 14 +16=1024\dfrac{1}{4} + \dfrac{1}{6} = \dfrac{10}{24}per hour

    Hence time taken to fill the tank  100100% = 2410\dfrac{24}{10} hours

    \therefore time taken to fill 5050% = 12×505×100\dfrac{12\times 50}{5\times100}  = 1.21.2 hours

    Since, 1hour=60minutes1 hour = 60 minutes

    1.2\therefore 1.2 hours= 1.2×60=721.2\times 60 = 72 minutes

    7272 minutes = (60+12)(60 +12) minutes = 1hour1 hour  12minutes12 minutes

    So, the answer is option A

  • Question 2
    1 / -0
    The average (mean) number of children per family in the village is approximately.
    Number of children00112233
    Number of families1313242436362727
    Data were collected on the number of children per family in a certain village and tabulated as shown.
    Solution

  • Question 3
    1 / -0
    Seven person P1,P2......,P7P_1,P_2......, P_7 initially seated at chairs C1,C2,.....C7C_1,C_2,.....C_7 respectively.They all left there chairs simultaneously for hand wash. Now in how many ways they can again take seats such that no one sits on his own seat and P1P_1, sits on C2C_2 and P2P_2 sits on C3C_3 ?
    Solution

  • Question 4
    1 / -0
    If mm denotes the number of 55 digit numbers if each successive digits are in their descending order of magnitude and nn is the corresponding figure. When the digits and in their ascending order of magnitude then (mn)(m-n) has the value
    Solution

     Step 1: Find m  {\textbf{Step 1: Find m}}

                     For m,  {\text{For m,}}

                     First we select any 5 digits from 0,1,2,...,9  {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}}

                     Number of ways = 10C5  {\text{Number of ways = }}{}^{10}{{\text{C}}_5}

                     Now after selection there is only 1 way to arrange these selected digits, i.e., in descending order.  {\text{Now after selection there is only 1 way to arrange these selected digits, i}}{\text{.e}}{\text{., in descending order}}{\text{.}}

                     Therefore m = 10C5×  1 = 10C5  {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{  1 = }}{}^{10}{{\text{C}}_5}

     Step 2: Find n  {\textbf{Step 2: Find n}}

                     For n,First we select any 5 digits from 1,2,...,9  {\text{For n,First we select any 5 digits from 1,2,}}...{\text{,9}}

                     We can’t select zero as  first digit because then the number won’t be a 5 - digit number.  {\text{We can't select zero as  first digit because then the number won't be a 5 - digit number}}{\text{.}}

                     Therefore number of ways  = 9C5  {\text{Therefore number of ways  = }}{}^9{{\text{C}}_5}

                      n = 9C5×  1 = 9C5   \Rightarrow {\text{n = }}{}^9{{\text{C}}_5}\times{\text{  1 = }}{}^9{{\text{C}}_5}

                      m - n = 10C5 - 9C5   \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}  

                     We know that,nCr + nCr1 = n+1Cr  {\text{We know that,}}{}^n{{\text{C}}_r}{\text{ + }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r}

                      n+1Cr - nCr = nCr1   \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{ - }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}}

                      10C5 - 9C5 = 9C4   \Rightarrow {}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4}

                     Hence, m - n = 9C4  {\text{Hence, m - n = }}{}^9{{\text{C}}_4}

     Hence, the correct answer is option A  {\textbf{Hence, the correct answer is option A}}

     

  • Question 5
    1 / -0
    It 10 men or 20 women or 40 children can do a piece of work in 7 months, then 5 men, 5 women and 5 children together can do half of the work in :
    Solution
    Let total work be WW
    Work done by 11 man in 11 month = W107=W 70 \frac { W }{ 10*7 } = \frac { W }{  70} 
    Work done by 11 woman in 11 month = W207=W 140 \frac { W }{ 20*7 } = \frac { W }{  140} 
    Work done by 11 child in 11 month = W407=W 280 \frac { W }{ 40*7 } = \frac { W }{  280} 
    Total work done by 5 men, 5 women and 5 children in 1 month= 5W70+5W140+5W280=W8\frac{5W}{70}+\frac{5W}{140}+\frac{5W}{280}= \frac{W}{8}
    Let number of months be nn
    W8n=W2\frac{W}{8}*n=\frac{W}{2}
    n=4

  • Question 6
    1 / -0
    Raman can do a work in 55 days, Jatin can do the same work in 77 days and Sachin can do the same work in 99 days. If they do the same work together and they are paid Rs. 28602860, then what is the share (in Rs.) of Raman?
    Solution
    Let the total work be 315315 [L.C.M of (5,7,9)(5,7,9)] units. Raman's. Jatin's and Sachin's each day work is 63,4563,45 and 3535 units.
    Hence, Ratio of share 63:45:3563:45:35
    Raman's share =63143×2860=Rs.1260=\cfrac { 63 }{ 143 } \times 2860=Rs.1260\quad
  • Question 7
    1 / -0
    What was the average number of children taking swim lessons from 1990 to 1995?
    Solution

  • Question 8
    1 / -0
    If four men working at the same rate can do 2/32/3 of a job in 4040 minutes it take one man working at this rate to do 2/52/5 of the job takes how many minutes?

    Solution

  • Question 9
    1 / -0
    A library has a'a' copies of one book, b'b' copies of each of two books, c'c' copies of each of three books, and single copy each of d'd'. The total number of ways in which these books can be arranged in a row is
    Solution

  • Question 10
    1 / -0
    If 1818 pumps can raise 21702170 tonnes of water in 1010 days working 77 hours  a day then in how many days will 1616 pumps raise 17361736 tonnes of water working 99 hours a day
    Solution
    1818 pumps raise 21702170 tonnes in 1010 days working 77 hours a day.

    In 11 day they raise 217010=217\dfrac{2170}{10}=217 tonnes

    In 11 hour they raise 2177=31\dfrac{217}{7}=31 tonnes.

    11 pump raises water =3118= \dfrac{31}{18} tonnes.

    Now,

    1616 pumps will raise =3118×16=\dfrac{31}{18}\times 16 tonnes.

    Working 99 hrs a day they will raise =3118×16×9=\dfrac{31}{18}\times 16\times 9 tonnes

    Let the number of days be dd days.

    Thus total =3118×16×9×d=\dfrac{31}{18}\times 16\times 9\times d

    1736=3118×16×9×d1736=\dfrac{31}{18}\times 16\times 9\times d

    d=1736×189×16×31=7\Rightarrow d=1736 \times \dfrac{18}{9\times 16\times 31}=7 days.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now