Self Studies

Limits and Continuity Test 31

Result Self Studies

Limits and Continuity Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    limnx=120cos2n(x10) \displaystyle \lim _{n \rightarrow \infty} \sum_{x=1}^{20} \cos ^{2 n}(x-10)  is equal to
    Solution
     limncos2nx={1,x=rπ,rI0,xrπ,rI \because \displaystyle  \lim _{n \rightarrow \infty} \cos ^{2 n} x=\begin{cases}1, x=r \pi, r \in I \\ 0, x \neq r \pi, r \in I\end{cases}
    Here, for  x=10,limncos2n(x10)=1 x=10, \displaystyle \lim _{n \rightarrow \infty} \cos ^{2 n}(x-10)=1
    and in all other cases it is zero.
     limnx=1cos2n(x10)=1 \therefore \displaystyle \lim _{n \rightarrow \infty} \sum_{x=1}^{\infty} \cos ^{2 n}(x-10)=1
  • Question 2
    1 / -0
     limx0sin(x2)ln(cos(2x2x))\displaystyle  \lim _{x \rightarrow 0} \dfrac{\sin \left(x^{2}\right)}{\ln \left(\cos \left(2 x^{2}-x\right)\right)}  is equal to
    Solution
    limx0sin(x2)In(cos(2x2x))\displaystyle \lim_{x \to 0}\dfrac{sin(x^2)}{In(cos(2x^2-x))}
    $$\displaystyle \lim_{x \to 0}\dfrac{sin(x^2)}{log \left(1-2 sin^2 \left(\dfrac{2x^2-x}{2}\right)\right)}$$
    =limx0sin(x2)x2x2log(12sin2(2x2x2))2sin2(2x2x2)[2sin2(2x2x2)]=\displaystyle \lim_{x \to 0} \dfrac{sin(x^2)x^2}{\dfrac{x^2log \left(1-2sin^2 \left(\dfrac{2x^2-x}{2}\right)\right)}{-2sin^2 \left(\dfrac{2x^2-x}{2}\right)}\left[-2sin^2 \left(\dfrac{2x^2-x}{2}\right)\right]}
    =limx0x22sin2(2x2x2)(2x2x2)2(2x2x2)2=\displaystyle \lim_{x \to 0} \dfrac{x^2}{\dfrac{2sin^2 \left(\dfrac{2x^2-x}{2}\right)}{\left(\dfrac{2x^2-x}{2}\right)^2}\left(\dfrac{2x^2-x}{2}\right)^2}
    limx02x2(2x2x)2=limx02(2x1)2=2\displaystyle \lim_{x \to 0}-\dfrac{2x^2}{(2x^2-x)^2}=\displaystyle \lim_{x \to 0}-\dfrac{2}{(2x-1)^2}=-2
  • Question 3
    1 / -0
    limx0xtan2x2xtanx(1cos2x)2 \displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}  is equal to
    Solution
    limx0xtan2x2xtanx4sin4x\displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{4 \sin ^{4} x}
    =limx0x4sin4x[2tanx1tan2x2tanx]=\displaystyle \lim _{x \rightarrow 0} \dfrac{x}{4 \sin ^{4} x}\left[\dfrac{2 \tan x}{1-\tan ^{2} x}-2 \tan x\right]
    =limx0xtan3x2sin4x(1tan2x)=\displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan ^{3} x}{2 \sin ^{4} x\left(1-\tan ^{2} x\right)}
    =12limx0xsinx1cos3x11tan2x=\dfrac{1}{2} \lim _{x \rightarrow 0} \dfrac{x}{\sin x} \dfrac{1}{\cos ^{3} x} \dfrac{1}{1-\tan ^{2} x}
    =12×1×113×110=12=\dfrac{1}{2} \times 1 \times \dfrac{1}{1^{3}} \times \dfrac{1}{1-0}=\dfrac{1}{2}
  • Question 4
    1 / -0
    limx01x[yaesin2tdtx+yaesin2tdt]\displaystyle \lim _{x \rightarrow 0} \dfrac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right] is equal to
    Solution
    limx01x[yaesin2tdt+ax+yesin2tdt]=limx01xyx+yesin2tdt\displaystyle \lim _{x \rightarrow 0} \dfrac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t+\int_{a}^{x+y} e^{\sin ^{2} t} d t\right]=\lim _{x \rightarrow 0} \dfrac{1}{x} \int_{y}^{x+y} e^{\sin ^{2} t} d t \\

    (00 form )\therefore\left(\dfrac{0}{0} \text { form }\right)\\

    Apply L'Hopital Rule
    =limx0esin2(x+y)(1+dydx)esin2ydydx1\displaystyle =\lim _{x \rightarrow 0} \dfrac{e^{\sin ^{2}(x+y)}\left(1+\dfrac{d y}{d x}\right)-e^{\sin ^{2} y} \dfrac{d y}{d x}}{1} \\

    =esin2y[1+dydxdydx]=esin2y=e^{\sin ^{2} y}\left[1+\dfrac{d y}{d x}-\dfrac{d y}{d x}\right]=e^{\sin ^{2} y}
  • Question 5
    1 / -0
    If yr=n!n+r1Cr1rn,y^{r}=\dfrac{n !^{n+r-1} C_{r-1}}{r^{n}}, where n=kr(k is constant ),n=k r(k \text { is constant }), then limry\operatorname{lim}_{r\rightarrow\infty} y is equal to
    Solution
    yr=(1+1r)(1+2r)(1+3r)(1+n1r)y^{r}=\left(1+\dfrac{1}{r}\right)\left(1+\dfrac{2}{r}\right)\left(1+\dfrac{3}{r}\right) \cdots\left(1+\dfrac{n-1}{r}\right)\\
    logy=1rp=1n1log(1+pr)\Rightarrow \log y=\dfrac{1}{r} \sum_{p=1}^{n-1} \log \left(1+\dfrac{p}{r}\right)\\
    limny=limry=klog(1+x)dx=(k1)loge(1+k)k\Rightarrow \lim _{n \rightarrow \infty} y=\lim _{r \rightarrow \infty} y=\int_{-\infty}^{k} \log (1+x) d x=(k-1) \log _{e}(1+k)-k
  • Question 6
    1 / -0
    limx0cos(tanx)cosxx4 \displaystyle \lim _{x \rightarrow 0} \dfrac{\cos (\tan x)-\cos x}{x^{4}}  is equal to
    Solution
     cos(tanx)cosx=2sin(x+tanx2)sin(xtanx2) \cos (\tan x)-\cos x=2 \sin \left(\dfrac{x+\tan x}{2}\right) \sin \left(\dfrac{x-\tan x}{2}\right)
    limx0cos(tanx)cosxx4=limx02sin(x+tanx2)sin(xtanx2)x4\Rightarrow \displaystyle \lim _{x \rightarrow 0} \dfrac{\cos (\tan x)-\cos x}{x^{4}}=\lim _{x \rightarrow 0} \dfrac{2 \sin \left(\dfrac{x+\tan x}{2}\right) \sin \left(\dfrac{x-\tan x}{2}\right)}{x^{4}}
     =limx02sin(x+tanx2)sin(xtanx2)x4(x+tanx2)(xtanx2)(x2tan2x4) =\displaystyle \lim _{x \rightarrow 0} \dfrac{2 \sin \left(\dfrac{x+\tan x}{2}\right) \sin \left(\dfrac{x-\tan x}{2}\right)}{x^{4}\left(\dfrac{x+\tan x}{2}\right)\left(\dfrac{x-\tan x}{2}\right)}\left(\dfrac{x^{2}-\tan ^{2} x}{4}\right)
     =12limx0x2tan2xx4 =\dfrac{1}{2} \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{2}-\tan ^{2} x}{x^{4}}
     =12limx0x2(x+x33+215x5+)2x4 =\dfrac{1}{2} \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{2}-\left(x+\dfrac{x^{3}}{3}+\dfrac{2}{15} x^{5}+\cdots\right)^{2}}{x^{4}}
     =12limx01x2(1(1+x23+215x4+)2)=13 =\dfrac{1}{2} \displaystyle \lim _{x \rightarrow 0} \dfrac{1}{x^{2}}\left(1-\left(1+\dfrac{x^{2}}{3}+\dfrac{2}{15} x^{4}+\dots\right)^{2}\right)=-\dfrac{1}{3}
  • Question 7
    1 / -0
    The value of limxaa2x2cotπ2axa+x \displaystyle \lim _{x \rightarrow a} \sqrt{a^{2}-x^{2}} \cot \dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}  is
    Solution
     limxaa2x2cotπ2axa+x  \displaystyle \lim _{x \rightarrow a} \sqrt{a^{2}-x^{2}} \cdot \cot \dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}
    =limxaa2x2tanπ2axa+x=\displaystyle \lim _{x \rightarrow a} \dfrac{\sqrt{a^{2}-x^{2}}}{\tan \dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}}
    =2πlimxaπ2axa+xtanπ2axa+x(a+x)=4aπ=\dfrac{2}{\pi} \displaystyle \lim _{x \rightarrow a} \dfrac{\dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}}{\tan \dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}}(a+x)=\dfrac{4 a}{\pi}
  • Question 8
    1 / -0
    The value of limn[1n+e1/nn+e2/nn+.+e(n1)/nn] \displaystyle \lim _{n \rightarrow \infty}\left[\dfrac{1}{n}+\dfrac{e^{1 / n}}{n}+\dfrac{e^{2 / n}}{n}+\ldots .+\dfrac{e^{(n-1) / n}}{n}\right]  is
    Solution
     limn[1n+e1/nn+e2/nn++e(n1)/nn]   \quad \displaystyle \lim _{n \rightarrow \infty}\left[\dfrac{1}{n}+\dfrac{e^{1 / n}}{n}+\dfrac{e^{2 / n}}{n}+\dots+\dfrac{e^{(n-1) / n}}{n}\right] 
     =limn[1+e1/n+(e1/n)2++(e1/n)n1n] =\displaystyle \lim _{n \rightarrow \infty}\left[\dfrac{1+e^{1 / n}+\left(e^{1 / n}\right)^{2}+\cdots+\left(e^{1 / n}\right)^{n-1}}{n}\right] 
     =limn1[(e1/n)n1]n(e1/n1)=(e1)limn1(e1/n11/n) =\displaystyle \lim _{n \rightarrow \infty} \dfrac{1 \cdot\left[\left(e^{1 / n}\right)^{n}-1\right]}{n\left(e^{1 / n}-1\right)}=(e-1) \lim _{n \rightarrow \infty} \dfrac{1}{\left(\dfrac{e^{1 / n}-1}{1 / n}\right)} 
     =(e1)×1=(e1) =(e-1) \times 1=(e-1) 
  • Question 9
    1 / -0
    If function f(x)=x29x3f(x)=\dfrac{x^2-9}{x-3} is continuous at x=3x=3, then value of (3)(3) will be:
    Solution
    f(x)=x29x3f(x)=\dfrac{x^2-9}{x-3}
    Left hand limit
    f(3+0)=limh0f(3+h)f(3+0)=\displaystyle \lim_{h \rightarrow 0}f(3+h)
    =limh0(3+h)293+h3=\displaystyle \lim_{h \rightarrow 0} \dfrac{(3+h)^2-9}{3+h-3}
    =limh0h(6+h)h=\displaystyle \lim_{h \rightarrow 0} \dfrac{h(6+h)}{h}
    =limh0(6+h)=\displaystyle \lim_{h \rightarrow 0} (6+h)
    =6=6
    Function is continous at x=3x=3, so
    f(3)=f(3+0)f(3)=f(3+0)
    f(3)=6f(3)=6
    Hence, option (a)(a) is correct.
  • Question 10
    1 / -0
    If f(x)={log(1+mx)log(1nx)x;x0k;x=0  f(x)=\begin{cases} \begin{matrix} \dfrac{\log (1+mx)- \log (1-nx)}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} k; & x=0 \end{matrix} \\ \begin{matrix}  &  \end{matrix} \end{cases}
    is continuous at x=0x=0 then the value of kk will be:
    Solution
    \therefore Function is continous at x=0x=0
    limx0f(x)=f(0)\therefore \displaystyle \lim_{x \rightarrow 0} f(x)=f(0)
    limx0log(1+mx)log(1nx)x=k\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{\log (1+mx)- \log (1-nx)}{x}=k
    limx0[mxm2x22+m3x33...][nxn2x22+n3x33...]x=k\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{ [mx-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3} - ...]- [nx-\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} - ...]}{x}=k
    limx0x[mm2x22+m3x33...+n+n2x22+n3x33+...]x=k\Rightarrow \displaystyle \lim_{x \rightarrow 0} \dfrac{x \left[ m-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3}-...+n+\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} +... \right]}{x}=k
    limx0mm2x22+m3x33...+n+n2x22+n3x33+...=k\Rightarrow \displaystyle \lim_{x \rightarrow 0} m-\dfrac{m^2 x^2}{2}+ \dfrac{m^3 x^3}{3}-...+n+\dfrac{n^2 x^2}{2}+ \dfrac{n^3 x^3}{3} +... =k
    m+n=k\Rightarrow m+n=k
    k=m+n\Rightarrow k=m+n
    Hence, option (b)(b) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now