Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    If limxa(f(x)+g(x))=2\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2 and limxa(f(x)g(x))=1\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1

    then the value of limxaf(x)g(x)\displaystyle\lim_{x\rightarrow a}{f(x)g(x)} is?

  • Question 2
    1 / -0

    xx1122334455
    f(x)f(x)4433771133
    The function f is continuous on the closed interval [1,5][1, 5] and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of 15f(x)dx\int_{1}^{5}f(x)dx is

  • Question 3
    1 / -0

    The value of limn (1n+1+1n+2+...+16n ) \displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right)  is

  • Question 4
    1 / -0

    A point where function f(x)f(x) is not continuous where f(x)=[sin[x]  ]f(x)=\left[ \sin { \left[ x \right]  }  \right] in (0,2π )\left( 0,2\pi  \right) ; is ([ ]\left[ \ast  \right] denotes greatest integer x\le x)

  • Question 5
    1 / -0

    The value of limx0((sinx ) 1/x+(1+x) sinx ) \lim _{ x\rightarrow 0 }{ \left( { \left( \sin { x }  \right)  }^{ 1/x }+{ \left( 1+x \right)  }^{ \sin { x }  } \right)  } whre x>0x> 0 is

  • Question 6
    1 / -0

     Ltn r=2n+1 3nnr2n2 \underset { n \rightarrow \infty }{ Lt } \sum _{ r=2n+1\quad  }^{ 3n } \dfrac {n}{r^2 - n^2} is equal to :

  • Question 7
    1 / -0

    The value of limx11x(cos1x)2\displaystyle \lim_{x \rightarrow 1^{-}}\dfrac {1 - \sqrt {x}}{(\cos^{-1}x)^{2}}

  • Question 8
    1 / -0

    limI(π2)=0ttanθcosθln(cosθ)dθ\displaystyle \lim_{I\rightarrow \left (\dfrac {\pi}{2}\right )} = \int_{0}^{t}\tan \theta \sqrt {\cos \theta} ln (\cos \theta) d\theta is equal to

  • Question 9
    1 / -0

    If ff ' (0) = 0 and f(x) is a differentiable and increasing function,then lim x0 x \rightarrow 0  x.f(x2)f(x)\frac {x.f ' (x^2)}{f ' (x)}

  • Question 10
    1 / -0

    limn 1nr=12nrn2+r2   \quad \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \sum _{ r=1 }^{ 2n }{ \cfrac { r }{ \sqrt { { n }^{ 2 }+{ r }^{ 2 } }  }  }  } equal to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now