Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    limx0(cosx ) 1/2(cosx ) 1/3sin2x  \displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { { \left( \cos { x }  \right)  }^{ 1/2 }-{ \left( \cos { x }  \right)  }^{ 1/3 } }{ \sin ^{ 2 }{ x }  }  } is $$

  • Question 2
    1 / -0

    limx0x(esinx 1) 1cosx   \displaystyle \lim _{ x\rightarrow 0 }{ \frac { x\left( { e }^{ \sin { x }  }-1 \right)  }{ 1-\cos { x }  }  } 

  • Question 3
    1 / -0

    limx0(cos x+asin bx)1x \underset { x\rightarrow 0 }{ lim } (\cos  x+a\sin  b{ x) }^{ \frac { 1 }{ x }  } is equal to 

  • Question 4
    1 / -0

    limx0x(1+acosx)bsinxx3=1\displaystyle \lim_{x\rightarrow 0}{\dfrac{x(1+a\cos x)-b\sin x}{x^{3}}}=1 then

  • Question 5
    1 / -0

    The value of limθ0+sinθsinθ\displaystyle\lim_{\theta \rightarrow 0^+}\dfrac{\sin\sqrt{\theta}}{\sqrt{\sin\theta}} is equal to?

  • Question 6
    1 / -0

    limx0(1sin2x1sinh2x)=?\displaystyle\lim_{x\rightarrow 0}\left(\dfrac{1}{\sin^2x}-\dfrac{1}{\sin h^2x}\right)=?

  • Question 7
    1 / -0

    Let ff : (π2,π2)R\left ( \dfrac{\pi}{2}, \dfrac{\pi}{2} \right )\rightarrow R , f(x)={limn(tanx)2n+x2sin2x+(tanx)2n;x01; x=0,nNf(x) = \left \{\begin{matrix} \lim_{n\rightarrow \infty }\dfrac{(tanx)^{2n} + x^2}{sin^2x + (tanx)^{2n}}; & x \neq 0 \\ 1; & x = 0 \end{matrix} \right., n \in N . Which of the following holds good ?

  • Question 8
    1 / -0

    If limx0(cosx+a3sin(b6x))1x=e512 \lim _{x \rightarrow 0}\left(\cos x+a^{3} \sin \left(b^{6} x\right)\right)^{\frac{1}{x}}=e^{512}  then value of ab2ab^2 is equal to

  • Question 9
    1 / -0

    limx0sin(πcos2x)x2\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin(\pi \cos^2x)}{x^2} is equal to?

  • Question 10
    1 / -0

    The value of limxysin2xsin2yx2y2\begin{matrix} lim \\ x\rightarrow y \end{matrix}\dfrac { { sin }^{ 2 }x-sin^{ 2 }y }{ { x }^{ 2 }-{ y }^{ 2 } }

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now