Self Studies

Number Theory Test 12

Result Self Studies

Number Theory Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number $$111111111$$ is a
    Solution
    A whole number that can be divided exactly by numbers other than 1 or itself is known as composite numbers.
    111111111 is an odd composite number. It is composed of three distinct prime numbers multiplied together.
    Prime factorisation of $$111111111 = {3}^{2} \times 37 \times 333667$$
  • Question 2
    1 / -0
    If $$(1+i)^{-20}=a+ib$$, then the values of $$a$$ and $$b$$ are
    Solution

    $$(1+i)^{-20}\\((1+i)^2){-10}\\(1+i^2+2i)^{-10}\\=(2i)^{-10}\\=(\frac{2^{-10}}{i^10})\\=-2^{-10}\\\therefore \>by\>comparison\>a\>=\>-2^{-10},\>b=0$$

  • Question 3
    1 / -0
    Find the which of the complex number has greatest modulus.
    Solution
    $$|7-5i| = \sqrt {54 } $$

    $$|\sqrt {3} +i \sqrt 2| = \sqrt 5$$ 

    $$ | -8+15i| = \sqrt {289}$$

    $$ |-3+3i| = 3\sqrt 2$$

    Thus option C has the greatest modulus.
  • Question 4
    1 / -0
    If $$\dfrac {z-1}{z+1}$$ is purely imaginary then 
    Solution
    $$\cfrac{z-1}{z+1}$$
    Let $$z=x+iy$$
    $$\cfrac{x+iy-1}{x+1+iy}=\cfrac{x-1+iy}{x+1+iy}\times \cfrac{x+1-iy}{x+1-iy}\\k=\cfrac{x^2+x-ixy-x+iy-1+ixy+iy+y^2}{(x+1)^2+y^2}\\k=\cfrac{x^2+y^2+2iy-1}{(x+1)^2+y^2}$$
    If k is purely imaginary then real part $$=0$$
    $$\cfrac{x^2+y^2-1}{(x+1)^2+y^2}=0\\x^2+y^2-1=0\\x^2+y^2=1\\ \therefore |z|=1$$
  • Question 5
    1 / -0
     For any complex number $$z$$ the minimum value of $$|z|+|z-2013i|$$ is...
    Solution
    Q:- minimum value of $$\left | z \right |+\left | z-2013i \right |$$
    Solution For ZEG
    $$ \left | 2013i \right | = \left | z+(2013i-z) \right | \leqslant \left | z \right |+\left | 2013i-z \right |$$
    $$ \Rightarrow 2013 \leqslant \left | z \right |+\left | z-2013i \right |$$
    $$ \Rightarrow $$ minimum value of $$ \left | z \right |+\left | z-2013i \right | $$ is
    2013
    which is attained when $$ z = i$$
    so, c is correct option.
    $$ x^{2}+y^{2} \leqslant  1 $$ & $$ y^2 \leqslant  1-x . $$

  • Question 6
    1 / -0
    If $$z=x+iy(x,y\epsilon R,x\neq -1/2),$$ the number of values of z satisfying $$\left | z \right |^{n}=z^{2}\left | z \right |^{n-2}+1.(n\epsilon N,n> 1)$$is
    Solution
    $$\begin{array}{l} we\, \, write\, , \\ { \left| z \right| ^{ n } }={ \left| z \right| ^{ n-2 } }\left( { { z^{ 2 } }+z } \right) +1\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left\{ { we\, know,\, \, all\, \, are\, real\, no. } \right.  \\ so,\, \, \, \, { z^{ 2 } }+z={ \overline { z } ^{ 2 } }+\overline { z } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ { where\, ,\, \, { z^{ 2 } }+z\, \, \, \, is\, real\, no.\,  } \right.  \\ \Rightarrow { z^{ 2 } }\, -{ \overline { z } ^{ 2 } }+z-\overline { z } =0 \\ \Rightarrow (z-\overline { z } )\, \, (z+\overline { z } +1)=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| \begin{array}{l} \, z=x+i\, y \\ \, \overline { z } =x-i\, y \end{array} \right.  \\ \, \, \therefore \, \, \, \, 2\, i\, y\, (2x+1)=0 \\ \, \, \, y=0\, \, \, \, \, \, \, \, \, \, \, or\, \, \, \, \, \, x=-\frac { 1 }{ 2 } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (Here,\, \, \, z\, \, is\, a\, \, \, real\, \, \, number. \\ Let\, see, \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| z \right| =x \\ \left| \begin{array}{l} \, \, { x^{ n } }={ x^{ n-2 } }.{ x^{ 2 } }+1 \\ \, \, \, { \left| x \right| ^{ n-2 } }.\, x=-1 \end{array} \right.  \\ \, \, \, \therefore \, \, \, \, x=-1\,  \\ so,\, number\, of\, z\, =1\, \, and\, \, the\, correct\, option\, is\, B.\, \, \, \, \,  \end{array}$$
  • Question 7
    1 / -0
    $$z_{1}$$ and $$z_{2}$$ are two non-zero complex numbers such that $$|z_{1}|=|z_{2}|$$ and $$argz_{1}+argz_{2}=\pi$$, then $$z_{2}$$ equals 
    Solution
    $$-z_1$$

    as, $$arg z_+argz_=\pi$$
  • Question 8
    1 / -0
    If $$ z=1+i\sqrt { 3, } \left| arg\left( z \right)  \right| +\left| arg\left( \overline { z }  \right)  \right|$$
    Solution
    $$z=i+i\sqrt{3}$$                      $$\bar{z}=1-i\sqrt{3}$$
    $$arg z=\dfrac{\pi}{3}$$                          $$arg(\bar{z})=\dfrac{\pi}{3}$$
    $$|arg z|+|arg (\bar{z})|=\dfrac{2\pi}{3}$$.

  • Question 9
    1 / -0
    If arg $$\left( {{Z_1} + {Z_2}} \right) = 0\;$$ and $$|{z_1}|\; = \;|{z_2}|\; = 1.$$ then.
    Solution
    We have,
    $$\arg \left( {{Z_1} + {Z_2}} \right) = 0\,\,\,\,\,\,\,\,\,\,\,\left| {{Z_1}} \right| = 1\,\,\,\,\left| {{Z_2}} \right| = 1$$
    $$\begin{matrix} { Z_{ 1 } }+{ Z_{ 2 } }=k\, \, \left( { k>0 } \right)  \\ { Z_{ 1 } }=\cos  \theta +i\sin  \theta  \\ { Z_{ 2 } }=\cos  \theta +i\sin  \theta  \\  \end{matrix}$$
    $$\cos \theta  + \cos \theta  + \left( {i\sin \theta  + i\sin \theta } \right) = k$$
    $$ \Rightarrow \sin \varphi  =  - \sin \theta $$
    $$ \Rightarrow \cos \varphi  =  - \cos \theta \,\,\,\,\,\,\,\,\,\,\,\,as\left| {{Z_2}} \right| = 1$$
    $${Z_1} = \cos \theta \, + i\sin \theta $$
    $${Z_2} = \cos \theta \, - i\sin \theta $$
    $${Z_1} = \overline {{Z_2}} $$
    Then,
    Option $$C$$ is correct answer.
  • Question 10
    1 / -0
    The value of $${\left( {1 + i} \right)^5} \times {\left( {1 - i} \right)^5}$$ is
    Solution

    We have,

    $$ {{\left( 1+i \right)}^{5}}{{\left( 1-i \right)}^{5}} $$

    $$ ={{\left( 1+i \right)}^{4}}{{\left( 1-i \right)}^{4}}\left( 1+i \right)\left( 1-i \right) $$

    $$ ={{\left( 1+i \right)}^{4}}{{\left( 1-i \right)}^{4}}\left( {{1}^{2}}-{{i}^{2}} \right) $$

    $$ ={{\left[ {{\left( 1+i \right)}^{2}} \right]}^{2}}{{\left[ {{\left( 1-i \right)}^{2}} \right]}^{2}}\left( {{1}^{2}}-\left( -1 \right) \right)\,\,\,\,\therefore {{i}^{2}}=-1 $$

    $$ ={{\left[ \left( {{1}^{2}}+{{i}^{2}}+2i \right) \right]}^{2}}{{\left[ \left( {{1}^{2}}+{{i}^{2}}-2i \right) \right]}^{2}}\left( 2 \right) $$

    $$ =2{{\left[ \left( {{1}^{2}}+\left( -1 \right)+2i \right) \right]}^{2}}{{\left[ \left( {{1}^{2}}+\left( -1 \right)-2i \right) \right]}^{2}}\,\,\,\,\,\,\therefore {{i}^{2}}=-1 $$

    $$ =2{{\left[ 2i \right]}^{2}}{{\left[ -2i \right]}^{2}} $$

    $$ =32 $$

    Hence, this is the answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now