Self Studies

Number Theory Test 13

Result Self Studies

Number Theory Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    How many two-digit prime numbers are there having the digit $$3$$ in their units place?
    Solution
    $$2$$ digit prime nos. having $$3$$ in their units place are-

    $$13,23,43,53,73$$

    $$\therefore$$ There are $$5$$ such nos.
  • Question 2
    1 / -0
    Argument and modulus of $$\left[\dfrac {1+i}{1-i}\right]^{2013}$$ are respectively ____
    Solution
    Let $$P={ [\cfrac { 1+i }{ 1-i } ] }^{ 2013 }={ [\cfrac { \sqrt { 2 } { e }^{ \cfrac { i\pi  }{ 4 }  } }{ \sqrt { 2 } { e }^{ \cfrac { -i\pi  }{ 4 }  } } ] }^{ 2013 }=({ e }^{ \cfrac { i2013\pi  }{ 2 }  })$$
    $$P=\cos { (2013\cfrac { \pi  }{ 2 } ) } +i\sin { (2013\cfrac { \pi  }{ 2 } ) } =i\sin { (-\cfrac { \pi  }{ 2 } ) } $$
    So, argument $$=-\cfrac { \pi  }{ 2 } $$
    and modulus$$=1$$
  • Question 3
    1 / -0
     If $$z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } ,$$ then amp$$(z_1+z_2)=$$ 
    Solution
    $$z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } $$ 
    $$ z_1+z_2=(\sqrt { 3 }+1)+i(\sqrt{3}-1) $$
    $$ z_1+z_2=(\sqrt { 3 }+1)+i(\sqrt{3}-1) $$
    $$\left| z_1+z_2 \right|=  \sqrt {(\sqrt{3}+1)^2+(\sqrt{3}-1)^2}=2\sqrt{2}$$

  • Question 4
    1 / -0
    If $$z=\dfrac {1+2i}{1-2i}$$  and.consider $$z=x+iy$$ then which of the following relationship is correct:
    Solution

  • Question 5
    1 / -0
    Find the least positive value of n, if $$(\dfrac{1+i}{1-i})^n=1$$
    Solution
    We have,
    $$\dfrac{1+i}{1-i} =\dfrac{1+i}{1-i} \times \dfrac{1+i}{1+i}=\dfrac{(1+i)^2}{1-i^2}=\dfrac{1+2i+i^2}{1-i^2}=\dfrac{1+2i-1}{1+1}=i$$

    Therefore,
    $$(\dfrac{1+i}{1-i})^n=1$$

    $$i^n=1$$
    $$ \implies$$ n is a multiple of 4.
    The smallest positive value of n is 4.
  • Question 6
    1 / -0
    Inequality  $$a + i b > c + i d$$  can be explained only when :
    Solution
    $$\begin{array}{l} a+ib>c+id \\ is\, \, valid\, \, only\, \, when\, \, b=0\, \, \& \, \, d=0\, \, as\, \, inequality\, \, \, in \\ complex\, no.\, \, is\, \, not\, \, defined. \end{array}$$
  • Question 7
    1 / -0
    If $$z_1=3+4i\\z_2=4-5i$$ Then find $$z_1+z_2$$
    Solution
    $$z_1=3+4i\\z_2=4-5i\\z_1+z_2=3+4i+4-5i\\7-i$$
  • Question 8
    1 / -0
    If $$z_1=3+4i,z_2=2-i$$ find $$z_2-z_1$$
    Solution
    Given $$z_1=3+4i\\z_2=2-i\\z_2-z_1=2-i-3-4i=-1-5i$$
  • Question 9
    1 / -0
    The complex numbers $$z_1=8+9i, z_2=4-6i$$ then $$z_1-z_2$$
    Solution
    $$z_1=8+9i\\z_2=4-6i\\z_1-z_2=8+9i-4+6i=4+15i$$
  • Question 10
    1 / -0
    If $$z$$ is a complex number such that $$|z|=1$$, then $$\left|\dfrac 1{\bar z}\right|$$ is 
    Solution
    Let $$z=x+iy\\|z|=\sqrt{x^2+y^2}=1\\x^2+y^2=1\\\dfrac 1z=\dfrac1{x+iy}\\\dfrac{x-iy}{\sqrt{x^2+y^2}}=x-iy\\\left|\dfrac 1z\right|=\sqrt{x^2+y^2}=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now