Self Studies

Number Theory Test 15

Result Self Studies

Number Theory Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\left| \dfrac { (3+i)(2-i) }{ 1+i }  \right|=$$
    Solution
    $$= | \dfrac{(3+i)(2-i)}{1+i}|$$

    $$=|\dfrac{6-3i+2i+1}{1+i}|$$

    $$=|\dfrac{7-i}{1+i}|$$

    $$=|\dfrac{(7-i)(1-i)}{2}|$$

    $$=|\dfrac{7-7i-i-1}{2}|$$

    $$=|\dfrac{6-8i}{2}|$$

    $$=|3-4i|$$

    $$=\sqrt{3^{2}+4^{2}}$$

    $$=\sqrt{25}$$
    $$=5$$
  • Question 2
    1 / -0
    If $$(a_1+ib_1)(a_2+ib_2)...(a_n+ib_n)=A+iB$$ then $$(a_1^2+b_1^2)(a_2^2+b_2^2)...(a_n^2+b_n^2)=$$
    Solution
    $$ (a_1+ib_1) (a_2+ib_2) ...(a_n+i b_n)=A+iB$$
    Taking modulus & then squaring,
    $$\left | (a_{1}+ib_{1})(a_{2}+ib_{2})-(a_{n}+ib_{n}) \right |^{2}=\left | A+iB \right |^{2}$$

    $$\Rightarrow |a_{1}+ib_{1}|^{2}|a_{2}+ib_{2}|^{2}...|a_{n}+ib_{n}|^{2}=A^{2}+B^{2}$$
    $$\Rightarrow (a_{1}^{2}+b_{1}^{2})(a^{2}_{2}+b^{2}_{2})...a^{2}_{n}+b^{2}_{n}=A^{2}+B^{2}$$ 

  • Question 3
    1 / -0
    The simplified value of $$\displaystyle \frac{1-i}{1+i}$$ is:
    Solution
    Let $$Z= \dfrac{1-i}{1+i}$$

              $$=\dfrac{(1-i)(1-i)}{(1+i)(1-i)}$$

              $$=\dfrac{(1-i)^{2}}{1^{2}-(i)^{2}} \quad \dots (a^2-b^2=(a+b)(a-b))$$

              $$=\dfrac{(1-i)^{2}}{1+1} \quad \dots (i^2=-1)$$

              $$=\dfrac{1-1-2i}{2}$$

              $$=\dfrac{-2i}{2}$$

    $$\therefore \dfrac{1-i}{1+i}$$$$=-i$$
  • Question 4
    1 / -0
    If $$\left ( 5+3i \right )(x+iy)=3-4i$$ then $$34x = $$
    Solution
    $$(5+3i)(x+iy)=3-4i$$
    L.H.S. $$=(5x-3y)+(5y+3x)i=3-4i$$
    $$5x-3y=3$$
    $$5y+3x=-4$$
    Solving the equations simultaneously,
    $$x=\dfrac{3}{34} ;  y=\dfrac{-29}{34}$$
    $$\therefore 34x=34\times \dfrac{3}{34}$$
    $$=3$$
  • Question 5
    1 / -0
    The value of $$1+(1+i)+(1+i)^2+(1+i)^3=$$
    Solution
    The given series is a G.P with a common ratio of $$(1+i)$$.
    Hence
     $$1+(1+i)+(1+i)^{2}+(1+i)^{3}$$

    $$=\dfrac{1-(1+i)^{4}}{1-(1+i)}$$

    Now
    $$1+i=\sqrt{2}(\dfrac{1+i}{\sqrt{2}})$$

    $$=\sqrt{2}(e^{i\frac{\pi}{4}})$$
    Hence
    $$\dfrac{1-(1+i)^{4}}{-i}$$

    $$=\dfrac{1-(\sqrt{2}(e^{i\frac{\pi}{4}}))^{4}}{-i}$$

    $$=\dfrac{1-4(e^{i\pi})}{-i}$$

    $$=\dfrac{1-4(-1)}{-i}$$

    $$=\dfrac{5}{-i}$$

    $$=5i$$
  • Question 6
    1 / -0
    If $$z=-1+3i$$ then $$z^2+2z+10=$$
    Solution
    $$z^{2}+2z+10$$

    $$=(z+1)^{2}+10-1$$

    $$=(z+1)^{2}+9$$

    $$=(-1+3i+1)^{2}+9$$

    $$=(3i)^{2}+9$$

    $$=-9+9$$

    $$=0$$

    Hence, $$z^{2}+2z+10=0$$ where $$z=-1+3i$$.
  • Question 7
    1 / -0
    If $$\alpha $$ and $$\beta $$ are real then $$\left| \dfrac { \alpha +i\beta  }{ \beta +i\alpha  }  \right|=$$ 
    Solution
    We know that

    $$|\dfrac{z_{1}}{z_{2}}|$$ $$=\dfrac{|z_{1}|}{|z_{2}|}$$
    Hence

    $$|\dfrac{\alpha+i\beta}{\beta+i\alpha}|$$

    $$=\dfrac{|\alpha+i\beta|}{|\beta+i\alpha|}$$

    $$=\dfrac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{\beta^{2}+\alpha^{2}}}$$

    $$=1$$.
  • Question 8
    1 / -0
    If $$(x+iy)(2-3i)=4+i\left ( \dfrac{1}{2} \right )$$ then $$x + y =$$
    Solution
    $$(x+iy)(2-3i)=4+i\dfrac{1}{2}$$

    $$2x+2iy-3ix+3y=4+\dfrac{i}{2}$$

    $$2x+3y+i(2y-3x)=4+\dfrac{i}{2}$$
    Hence
    $$2x+3y=4$$ ................................(i)
    And
    $$2y-3x=\dfrac{1}{2}$$ .............................(ii)

    Solving both the equations give us
    $$y=1$$

    $$x=\dfrac{1}{2}$$

    Hence

    $$x+y$$

    $$=1+\dfrac{1}{2}$$

    $$=\dfrac{3}{2}$$.
  • Question 9
    1 / -0

    The minimum value of $$|\mathrm{z}|+|\mathrm{z}-1|+|\mathrm{z}-2|$$ is
    Solution
    Let $$z = x+iy $$
    $$f(z) = |z| + |z-1| +|z-2| $$
    $$f(x,y) = \sqrt{x^2 +y^2} +\sqrt { (x-1)^2+ y^2} +\sqrt {(x-2)^2 +y^2} $$
    For minimum value, $$y= 0 $$ 
    $$f(x) = |x| + |x-1| +|x-2| $$   for all $$x$$
    The function can be expressed as follows
    $$ f(x) = 3x -3 $$,    $$x \geq 2 $$
    $$f(x) = x+1, $$      $$1\leq x<2 $$
    $$f(x) = 3- x $$,     $$0\leq x\leq 1$$
    $$f(x) = -3x +3 $$,   $$ x <0 $$
    Hence, $$f(min) = f(1) = 2 $$

  • Question 10
    1 / -0
    If $$m_1$$, $$m_2$$, $$m_3$$ and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i \ and\  2 – 3i$$ then the correct order among the following is :
    Solution
    $$m_{1}=|1+4i|=\sqrt{1+16}=\sqrt{17}$$.
    $$m_{2}=|3+i|=\sqrt{9+1}=\sqrt{10}$$
    $$m_{3}=|1-i|=\sqrt{1+1}=\sqrt{2}$$
    $$m_{4}=|2-3i|=\sqrt{4+9}=\sqrt{13}$$
    Hence
    $$m_{1}>m_{4}>m_{2}>m_{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now