Self Studies

Number Theory Test 16

Result Self Studies

Number Theory Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The modulus of $$(1 + i) (3 + 4i) =$$
    Solution
    $$z_{1},z_{2}$$ being two complex numbers,
    $$|z_{1}.z_{2}|=|z_{1}|.|z_{2}|$$
    $$\therefore |(1+i)(3+4i)|$$$$=|1+i|\cdot|3+4i|$$
    $$=\sqrt{1^{2}+1^{2}}\times \sqrt{3^{2}+4^{2}}$$
    $$=\sqrt{2}\sqrt{25}$$
    $$=\sqrt{50}$$
  • Question 2
    1 / -0

    If $$|\mathrm{z}-4|<|\mathrm{z}-2|$$ then
    Solution
    $$|z - 4| < |z - 2|$$
    Let $$z = x + iy$$
    $$\therefore$$ $$|x - 4 + iy| < |x - 2 + iy|$$
    $$\therefore$$ $$\sqrt {x^2 - 8x + 16 + y^2} < \sqrt{x^2 - 4x + 4 + y^2}$$
    $$\therefore$$  $$x^2 - 8x + 16 + y^2 < x^2 - 4x + 4 + y^2$$
    $$\therefore$$ $$8x - 4x > 16 - 4$$
    $$\therefore$$ $$4x > 12$$
    Thus, $$Re(z) > 3.$$
  • Question 3
    1 / -0
    If $$z_1$$, $$z_2$$, $$z_3$$ are complex numbers such that $$\left| { z }_{ 1 } \right| =\left| { z }_{ 2 } \right| =\left| { z }_{ 3 } \right| =\left| \dfrac { 1 }{ { z }_{ 1 } } +\dfrac { 1 }{ { z }_{ 2 } } +\dfrac { 1 }{ { z }_{ 3 } }  \right| =1$$, then $$|z_1+z_2+z_3|$$ is:
    Solution
    Let $$z_1  = cis \theta_1$$, $$z_2 = cis\theta_2 $$ and $$z_3 =cis\theta_3 $$
    We have, 
    $$\left | \dfrac{1}{z_1} + \dfrac{1}{z_2}  +\dfrac{1}{z_3}  \right| = 1 $$

    $$| cis(-\theta_1) + cis(-\theta_2) + cis (-\theta_3) | =  1 $$

    Hence, 
    $$ | (\cos \theta_1 + \cos \theta_2 + \cos \theta_3 ) - i ( \sin \theta_1 + \sin \theta_2 + \sin \theta_3 ) |  = 1$$

    Hence, 
    $$ |  (\cos \theta_1 + \cos \theta_2 + \cos \theta_3 ) + i ( \sin \theta_1 + \sin \theta_2 + \sin \theta_3 ) | =1 $$

    Hence, 
    $$ |z_1+ z_2+ z_3 |  =1 $$
  • Question 4
    1 / -0
    If z is a complex number satisfying $$|z^2+1|=4|z|$$, then the minimum value of $$|z|$$ is
    Solution
    Given:
    $$|z^2+1|=4|z|$$
    $$\Rightarrow |z+\cfrac{1}{z}|=4$$
    We know,
    $$\left ||z|-\cfrac{1}{|z|}\right |\leq \left|z+\cfrac{1}{z}\right|\leq |z|+\cfrac{1}{|z|}$$
    $$\therefore \pm(|z|-\cfrac{1}{|z|})\leq 4\leq |z|+\cfrac{1}{|z|}$$
    Equations we get:
    $$1.$$  $$|z|^2-4|z|-1=0$$
    $$2.$$  $$|z|^2+4|z|-1=0$$
    $$3.$$  $$|z|^2-4|z|+1=0$$
    $$[|z|$$ always $$\geq 0]$$
    Solving eq (1):
    $$|z|=\sqrt{5}+2$$
    Solving eq (2):
    $$|z|=\sqrt{5}-2$$
    Solving eq (3):
    $$|z|=2\pm \sqrt{3}$$
    $$\therefore$$ Minimum $$|z|=\sqrt{5}-2$$
  • Question 5
    1 / -0
    lf $$(x+iy)(2+cos\theta+isin\theta)=3$$ then $$x^{2}+y^{2}-4x+3$$ is
    Solution
    $$(x+iy)(2+cos\theta+isin\theta)=3$$

    $$2x+x(cos\theta+isin\theta)+i2y+iy(cos\theta+isin\theta)=3$$

    $$2x+xcos\theta-ysin\theta+i(xsin\theta+2y+ycos\theta)=3$$

    Therefore, equating the real and imaginary parts of LHS and RHS gives us
     
    $$2x+xcos\theta-ysin\theta=3$$ 

    $$xsin\theta+ycos\theta+2y=0$$ 

    $$\Rightarrow xcos\theta-ysin\theta=3-2x$$

    Squaring both sides give us 

    $$x^{2}cos^{2}\theta+y^{2}sin^{2}\theta-2xycos\theta.sin\theta=(2x-3)^{2}$$ ...(i)

    And 

    $$xsin\theta+ycos\theta=-2y$$

    $$x^{2}sin^{2}\theta+y^{2}cos^{2}\theta+2xysin\theta.cos\theta=4y^{2}$$ ...(ii)

    Adding both i and ii gives us

    $$x^{2}+y^{2}=4y^{2}+(2x-3)^{2}$$

    $$x^{2}+y^{2}=4y^{2}+4x^{2}-12x+9$$

    $$3x^{2}+3y^{2}-12x+9=0$$

    $$x^{2}+y^{2}-4x+3=0$$
  • Question 6
    1 / -0
    If $$|{z}|-z=1+2i$$ then $$z=$$
    Solution
    Given,
    $$|z|-z=1+2i$$

    Let $$z=x+iy$$

    So, $$|z|-z=1+2i$$

    $$\Rightarrow (\sqrt{x^{2}+y^{2}}-x)-iy=1+2i$$

    $$\Rightarrow y=-2  --(1)$$

    So, $$\sqrt{x^{2}+y^{2}}-x=1$$

    $$\Rightarrow \sqrt{x^{2}+4}-x=1$$

    $$\Rightarrow x^{2}+4=(1+x)^{2}=x^{2}+2x+1$$

    $$\Rightarrow 2x=3$$

    $$\Rightarrow x=\dfrac{3}{2}  --(2)$$

    Hence, 
    $$z=\dfrac{3}{2}-2i$$
  • Question 7
    1 / -0
    If $$z=2-i\sqrt{3}$$ then $$z^{4}-4z^{2}+8z+35$$ is :
    Solution
    Given $$z = 2 - i \sqrt3,$$ $$\therefore$$ $$z - 2 = - i \sqrt3$$
    Squaring both sides, $$\therefore$$ $$z^2 - 4z + 4 = -3$$
    $$\therefore$$ $$z^2 - 4z = -7$$
    Now $$z^4 - 4z^2 + 8z + 35 = (z^2 - 4z + 7)(z^2 + 4z + 5)$$
    Thus $$z^4 - 4z^2 + 8z + 35 = 0.$$
  • Question 8
    1 / -0
    For any two non-zero complex numbers $$Z_1$$ and $$Z_2$$, the value of $$\left(\left|{ Z }_{ 1 }\right|+\left|{ Z }_{ 2 }\right|\right)\left|\dfrac{{ Z }_{ 1 }}{\left|{Z}_{1}\right|}+\dfrac{{Z}_{2}}{\left|{Z}_{2}\right|}\right|$$ is:
    Solution
    $$\left|\dfrac{Z_1}{|Z_1|}+\dfrac{Z_2}{|Z_2|}\right|\le\left|\dfrac{Z_1}{|Z_1|}\right|+\left|\dfrac{Z_2}{|Z_2|}\right|\le2$$
    $$\therefore \left|\dfrac{Z_1}{|Z_1|}+\dfrac{Z_2}{|Z_2|}\right|\le2$$
    Multiplying both sides by $$(|Z_1|+|Z_2|)$$, we get
    $$(|Z_1|+|Z_2|)\left|\dfrac{Z_1}{|Z_1|}+\dfrac{Z_2}{|Z_2|}\right|\le2(|Z_1|+|Z_2|)$$
  • Question 9
    1 / -0

    lf $$z_{1},\ z_{2}$$ are roots of equation $$z^{2}-az+a^{2}=0$$, then $$|\displaystyle \frac{z_{1}}{z_{2}}|=$$
    Solution

    $$z_{1}$$  and  $$z_{2}$$  are  roots  of   $$z^{2}-az+a^{2}=0$$
    $$\therefore z_{1},z_{2}=\dfrac{a\pm \sqrt{a^{2}-4a^{2}}}{2}$$
    $$=a(\dfrac{1\pm i\sqrt{3}}{2})$$
    $$\therefore z_{1} , z_{2}$$ are multiple of complex cube roots of unity.
    $$\therefore |\dfrac{z_{1}}{z_{2}}|=|\dfrac{\omega ^{2}}{\omega }|=|\omega |=1$$

  • Question 10
    1 / -0
    I. lf $$\left |z-\displaystyle \frac{2}{z}\right |=2$$ then the greatest value of $$|z|$$ is $$\sqrt{3}+1$$
    II. $$\left | z+1 \right |-\left |  z-1\right |=\frac{3}{2}$$ then the least value of $$\left | z \right |=\frac{3}{4}$$
    Solution
    I. We have $$|z|=|z+\frac{2}{z}-\frac{2}{z}|$$ $$\leq |z|+\frac{2}{z}+(\frac{-2}{z})|$$
    $$\leq |z+\frac{2}{z}|+|-\frac{2}{z}|$$
    $$\therefore |z|\leq 2+\frac{2}{|z|}$$
    $$\therefore |z|^{2}-2|z|-2\leq 0$$
    $$\therefore (|z|-1+\sqrt{3})(|z|-1-\sqrt{3})\leq 0$$
    $$1-\sqrt{3}\leq |z|\leq 1+\sqrt{3}$$
    Hence max value of z is $$1+\sqrt{3}$$

    II.  $$(1+x)-(1-x)=\frac{3}{2}$$
    $$2x=\frac{3}{2}$$
    $$x=\frac{3}{4}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now