Self Studies

Number Theory Test 18

Result Self Studies

Number Theory Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

     lf $$Z=x+iy$$ is a complex number then $$|x|+|y|\leq$$ ?
    Solution
    $$z=x+iy = r\cos\theta + ir\sin\theta where \left|z\right|=r$$
    Now, $$\left|x\right|+ \left|y\right|=\left| r\cos\theta\right|+\left| r\sin\theta \right|$$
    $$=|r|\left \{ \cos\theta|+|\sin\theta| \right \}$$
    But $$-\sqrt{2} < \cos s \theta +\ sin\theta < \sqrt2$$
    $$\Rightarrow |x|+|y|\leqslant \sqrt{2}|r|$$
    $$\leqslant \sqrt{2}|z|$$
  • Question 2
    1 / -0
    Statement 1: Let z be a complex number, then the equation $$z^4+z+2=0$$ cannot have a root, such that $$|z| < 1$$.
    Statement 2: $$|z_1+z_2| \leq |z_1|+|z_2|$$
    Solution
    Let us assume that there exists a $$z$$ which satisfies the given equation and $$ |z|<1$$
    Now,  $${ z }^{ 4 }+z+2=0$$
    $$\Rightarrow -2={ z }^{ 4 }+z$$
    $$\Rightarrow |-2|=|{ z }^{ 4 }+z|$$
    $$ \Rightarrow 2\le |{ z }^{ 4 }|+|z|$$
    $$\Rightarrow 2<1+1$$,because$$\quad |z|<1,$$
    This is not possible. Hence the equation does not have a root which satisfies $$\quad |z|<1$$
    Hence statement 1 is true and Statement 2 is the correct explanation for it.
  • Question 3
    1 / -0
    If z is unimodular complex number then $$\mathrm{z}= (\displaystyle \frac{1+ia}{1-ia})^{4}$$ has
    Solution

    We have $$(\dfrac{1+ia}{1-ia})^4 = z$$ is a fixed complex number
    $$\Rightarrow (\dfrac{1+ia}{1-ia})^4 = cos\theta + isin \theta$$
    $$\dfrac{1+ia}{1-ia} = cos(\dfrac{2n\pi+\theta}{4})$$$$+isin\dfrac{2n\pi+\theta}{4}$$

    $$\Rightarrow \dfrac{1+ia}{1-ia}=cos\theta + isin\theta$$
    Where,$$\phi = \dfrac{2n\phi+\phi}{4}$$
    applying componendo dividend,
    $$\dfrac{1+ia+1-ia}{1+ia=1+ia}=\dfrac{cos\theta+isin\phi+1}{cos\theta+isin\phi-1}$$
    $$\Rightarrow \dfrac{2}{2ia}=\dfrac{cos\theta+isin\phi+1}{cos\theta+isin\phi-1}$$
    $$\Rightarrow \dfrac{1}{ia}=\dfrac{2\omega s^2\dfrac{\phi}{2}+2isin\dfrac{\phi}{2}\cos\dfrac{\phi}{2}}{-2sin^2\dfrac{\phi}{2}+2isin\dfrac{\phi}{2}\cos\dfrac{\phi}{2}}$$
    $$=co+\dfrac{\theta}{2}\dfrac{(\omega s \dfrac{\theta}{2}+isin\dfrac{\theta}{2})}{(-sin \dfrac{\theta}{2}+isin\dfrac{\theta}{2})}$$
    $$\Rightarrow a = -tan \dfrac{\theta}{2}$$
    $$= -tan \dfrac{2n\pi + \theta}{8}$$
    $$n=0, 1, 2, 3$$
    $$i.e a = -tan \dfrac{\theta}{8}, -tan (\dfrac{\pi}{4}+\dfrac{\theta}{8}),$$$$-tan (\dfrac{\pi}{2}+\dfrac{\theta}{8}),$$
    $$4 real roots, -tan (\dfrac{3\pi}{2}+\dfrac{\theta}{8}) \dfrac{1}{ia}$$
    $$= i cot \dfrac{\theta}{2}$$

  • Question 4
    1 / -0

    lf $$z_{1},\ z_{2}$$ are any two complex numbers then $$\left |z_{1^{+}}\sqrt{\mathrm{z}_{1}^{2}-\mathrm{z}_{2}^{2}} \right |+\left|\mathrm{z}_{1}-\sqrt{\mathrm{z}_{1}^{2}-\mathrm{z}_{2}^{2}} \right|$$ is equal to
    Solution
    $${ \left( \left| { z }_{ 1 }+\sqrt { { z }_{ 1 }^{ 2 }-{ z }_{ 2 }^{ 2 } }  \right| +\left| { z }_{ 1 }-\sqrt { { z }_{ 1 }^{ 2 }-{ z }_{ 2 }^{ 2 } }  \right|  \right)  }^{ 2 }$$
    $$={ \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }-{ \left| { z }_{ 2 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }-{ \left| { z }_{ 2 } \right|  }^{ 2 }+2{ \left| { z }_{ 1 } \right|  }\left| \sqrt { { z }_{ 1 }^{ 2 }-{ z }_{ 2 }^{ 2 } }  \right| +\left( -2\left| { z }_{ 1 } \right| \left| \sqrt { { z }_{ 1 }^{ 2 }-{ z }_{ 2 }^{ 2 } }  \right|  \right) +2\left( { \left| { z }_{ 1 } \right|  }^{ 2 }-\left| { \left| { z }_{ 1 } \right|  }^{ 2 }-{ \left| { z }_{ 2 } \right|  }^{ 2 } \right|  \right) $$
    $$=4{ z }_{ 1 }^{ 2 }\longrightarrow \left( 1 \right) $$  (On simplifying )
    $$\Rightarrow { \left( \left| { z }_{ 1 }+{ z }_{ 2 } \right| +\left| { z }_{ 1 }-{ z }_{ 2 } \right|  \right)  }^{ 2 }={ \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| +{ \left| { z }_{ 1 } \right|  }^{ 2 }-2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| +\left( { \left| { z }_{ 1 } \right|  }^{ 2 }-{ \left| { z }_{ 2 } \right|  }^{ 2 } \right) ^{ 2 }$$
                                                    $$=4{ z }_{ 1 }^{ 2 }\longrightarrow \left( 2 \right) $$  (On Simplifying )
    $$\Rightarrow (1)=(2)$$
    Hence, the answer is $$\left| { z }_{ 1 }+{ z }_{ 2 } \right| +\left| { z }_{ 1 }-{ z }_{ 2 } \right|.$$
  • Question 5
    1 / -0
    If $$\dfrac{x+3i}{2+iy}=1-i$$, then the value of $$\left ( 5x-7y \right )^2$$ is
    Solution
    $$\dfrac{x+3i}{2+iy}=1-i$$

    Or
    $$x+3i=(1-i)(2+iy)$$

    $$x+3i=2+iy-2i+y$$

    $$x-y-2=i(y-5)$$
    Or
    $$(x-y-2)+i(5-y)=0$$

    Hence
    $$5-y=0$$ or $$y=5$$ and 

    $$x-y-2=0$$ or $$x-y=2$$

    Since $$y=5$$

    Hence
    $$x=y+2$$ or $$x=5+2$$

    $$x=7$$

    Therefore
    $$x=7$$ and $$y=5$$.

    Therefore
    $$(5x-7y)^{2}$$

    $$=(5(7)-7(5))^{2}$$

    $$=(35-35)^{2}$$

    $$=0$$
  • Question 6
    1 / -0

    $$\mathrm{l}\mathrm{n}$$ a G. $$\mathrm{P}$$ first term is $$\sqrt{3}+i$$ and common ratio is $$\sqrt{3}-i$$ then the modulus of the $$n^{th}$$ term of the G.$$\mathrm{P}$$. is
    Solution

    $$a_{n}=(\sqrt{3+i})(\sqrt{3}-i)^{n-1}$$

    $$\downarrow$$            $$\downarrow $$

    first       ratio

    $$|a_{n}|=|\sqrt{3}+i|(|\sqrt{3-i}|)^{n-1}$$

    $$[as |z^{n-1}|=(|z|)^{n-1}]$$

    $$=(\sqrt{3+1})\times(\sqrt{3+1})^{n-1}$$

    $$=2\times2^{n-1} = 2^n$$

  • Question 7
    1 / -0

    If $$\alpha,\ \beta,\ \gamma$$ are modulus of the complex number $$3+4i, -5+12i,\ 1-i$$, then the increasing order for $$\alpha, \beta $$ and $$\gamma$$ is
    Solution
    $$\alpha =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } =5$$
    $$\beta =\sqrt{(5)^{2}+(12)^{2}}=13$$
    $$\gamma =\sqrt{1+1^{2}}=\sqrt{2}$$
    $$\Rightarrow \gamma < \alpha < \beta$$
  • Question 8
    1 / -0
    If $$|\mathrm{z}-4|<|\mathrm{z}-2|$$, its solution is given by
    Solution
    Given $$|z-4| < |z-2|$$
    all complex numbers
    lie farther from $$(2,0)$$
    than from $$(4,0)$$ as
    $$|z-4|<|z-2|$$
    So they lie on the side of $$(z,0)$$ which is
    closer to $$(4,0)$$ than $$(2,0)$$
    $$z=x+iy \Rightarrow x>3$$
    $$\therefore Re (z) >3$$

  • Question 9
    1 / -0
    Solve the equation $$\left|z\right| = z + 1 + 2i$$.
    Solution
    $$\left|z\right| = z + 1 +2i$$

    $$\Longrightarrow \sqrt{x^2 + y^2} = x + iy +1 + 2i= x + 1 +(2+y)i$$

    $$\Longrightarrow \sqrt{x^2 +y^2} = x + 1$$ and $$ 0 = 2 + y$$ or $$ y = -2$$

    $$\Longrightarrow \sqrt{x^2 + 4} = x + 1$$

     $$\Rightarrow x^2 + 4 = x^2 + 2x + 1$$

     $$\Rightarrow 2x = 3$$

     $$\therefore x = \dfrac{3}{2}$$

    $$\Longrightarrow x + iy = \dfrac{3}{2} - 2i$$    

    Ans: D
  • Question 10
    1 / -0
    If $$z = x + iy$$ and $$w = \displaystyle \frac{1 - zi}{z - i}, |w| = 1$$, then find the locus of z.
    Solution
    We have, 
    $$\left|w\right| = 1
    \Longrightarrow \left|\dfrac{1 - iz}{z - i}\right| = 1$$
    or $$\dfrac{\left|1 - iz\right|}{\left|z - i\right|} =1$$
    or $$\left|1 - iz\right| = \left|z - i\right|$$       (1)
    or $$\left| - i (x + iy) \right| = \left|x + iy - i\right|$$, where $$ z = x + iy$$
    or $$\left|1 + y - ix\right| = \left|x + i(y - 1)\right|$$
    or $$\sqrt{(1+y)^2 + (-x)^2} = \sqrt{x^2 + (y - 1)^1}$$
    or $$(1 + y)^2 + x^2 + x^2 + (y-1)^2$$
    or $$y = 0$$
    $$\Longrightarrow z = x + i0 = x,$$ which is purely real

    Ans: D
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now