Self Studies

Number Theory Test 20

Result Self Studies

Number Theory Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$(w - \overline{w}z)/(1-z)$$ is purely real where $$w = \alpha + i\beta, \beta \neq 0$$ and $$z \neq 1$$, then set of the values of  $$z$$ is 
    Solution

    $$\dfrac{(\omega - \overline{\omega} z)}{1-z}$$ is purely real and $$z\ne 1$$

    $$\dfrac{(\omega - \overline{\omega} z)}{1-z} = \dfrac{\overline{\omega -\overline{\omega} z}}{(\overline{1-z})}$$  

    $$\dfrac{(\omega - \overline{\omega} z)}{1-z} = \dfrac{\overline {\omega} - \omega\overline{z}}{1-\overline z }$$

    $$(\omega - \overline{\omega} z)(1- \overline{z}) = (1-z)(\overline{\omega}-\omega\overline z)$$

    $$\omega -\omega\overline z-\overline{\omega}z + \overline{\omega} |z|^2 = \overline{\omega}+\omega|z|^2 -\overline{\omega}z-\omega\overline z$$

    $$\omega - \overline{\omega} = |z|^2 (\omega - \overline{\omega})$$

    $$\therefore |z|^2 = 1$$ (as $$Im(\omega) = \beta \ne 0 $$)

    $$\Rightarrow |z| =1$$ But $$z\ne 1$$ 

    $$\therefore$$  Set of values of $$z $$ is $$z:|z| =1,z\ne1$$


  • Question 2
    1 / -0
    Find the greatest and the least value of $$\left|z_1 + z_2\right|$$ if $$z_1 = 24 + 7i$$ and $$\left|z_2\right| = 6.$$
    Solution
    $$\left|z_1 + z_2\right| \le \left|z_1\right| + \left|z_2\right| = \left|24 + 7i\right| + 6 = 25 + 6 = 31$$
    Also, 
    $$\left|z_1 + z_2\right| = \left|z_1 - (-z_2)\right| \ge \left|\left|z_1\right| - \left|z_2\right|\right|
    \Longrightarrow \left|z_1 + z_2\right| \ge \left|25 - 6\right| = 19$$
    Hence, the least value of $$\left|z_1 + z_2\right|$$ is 19 and the greatest value is 31.

    Ans: C 
  • Question 3
    1 / -0
    If $$(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$$, then find the value of $$a^2 + b^2$$. 
    Solution
    Given that $$(\sqrt{8} + i)^{50} = 3^{49}(a + ib)$$
    Taking modulus and squaring both sides, we get 
    $$(8 + 1)^{50} = 3^{98}(a^2 + b^2)$$
    or $$9^{50}=3^{98}(a^2 + b^2)$$
    or $$3^{100} = 3^{98} (a^2 + b^2)$$
    or $$(a^2 + b^2) = 9$$

    Ans: A
  • Question 4
    1 / -0
    Complex number $$z$$ satisfy the equation $$\left|z - (4/z)\right| = 2$$ The difference between the least and the greatest modulus of complex number is 
    Solution
    $$\left| z-\frac { 4 }{ z }  \right| =2$$

    $$\Longrightarrow \left| { z }^{ 2 }-4 \right| =2\left| z \right| $$       ..(1)

    $$z=rcisA=r\left( \cos { A } +i\sin { A }  \right) $$

    Substitute $$z$$ in equation (1)
    $$\Longrightarrow \left| { r }^{ 2 }\cos { 2A-4+{ r }^{ 2 }i\sin { 2A }  }  \right| =2r$$

    $$\Longrightarrow { \left( { r }^{ 2 }\cos { 2A } -4 \right)  }^{ 2 }+{ r }^{ 4 }\sin ^{ 2 }{ 2A=4{ r }^{ 2 } } $$

    $$\Longrightarrow \dfrac { { r }^{ 4 }-4{ r }^{ 2 }+16 }{ 8{ r }^{ 2 } } =\cos { 2A } $$

    $$\Longrightarrow -1\le \dfrac { { r }^{ 4 }-4{ r }^{ 2 }+16 }{ 8{ r }^{ 2 } } \le 1$$ ......($$\because \quad -1\le \cos { 2A\le 1 } $$}

    $$\Longrightarrow -1\le \dfrac { { r }^{ 4 }-4{ r }^{ 2 }+16 }{ 8{ r }^{ 2 } } \le 1$$
      
    Case 1:
    $$\dfrac { { r }^{ 4 }-4{ r }^{ 2 }+16 }{ 8{ r }^{ 2 } } \ge 1$$

    $$\therefore \quad r\in { R }^{ + }$$        ...{$$\because \quad r>0$$}

    Case 2:
    $$\dfrac { { r }^{ 4 }-4{ r }^{ 2 }+16 }{ 8{ r }^{ 2 } } \le 1$$

    $$\Longrightarrow { r }^{ 4 }-12{ r }^{ 2 }+16\le 0$$

    $$\Longrightarrow 6-2\sqrt { 5 } \le { r }^{ 2 }\le 6+2\sqrt { 5 } $$

    $$\Longrightarrow { \left( \sqrt { 5 } -1 \right)  }^{ 2 }\le { r }^{ 2 }\le { \left( \sqrt { 5 } +1 \right)  }^{ 2 }$$

    $$\therefore \quad \sqrt { 5 } -1\le r\le \sqrt { 5 } +1$$       ....{$$\because \quad r>0$$}

    Therefore the difference between maximum and least value is $$\sqrt { 5 } +1-\sqrt { 5 } +1=2$$

    Ans: A
  • Question 5
    1 / -0
    For all complex numbers $$z_1, z_2$$ satisfying $$\left|z_1\right| = 12$$ and $$\left|z_2 - 3 - 4i\right| = 5$$, then minimum value of $$\left|z_1 - z_2\right|$$ is  
    Solution
    Given:-
    $$ { z }_{ 1 }$$ and $${ z }_{ 2 }$$ are the complex number.
    $$ \left| { z }_{ 1 } \right| =12 \left| { z }_{ 2 }-3-4i \right| =5$$
    To find minimum value of $$\left| { z }_{ 1 }-{ z }_{ 2 } \right| $$
    Solution:-
    We know that
    $$ \left| { z }_{ 1 }-{ z }_{ 2 } \right| \ge \left| { z }_{ 1 } \right| -\left| { z }_{ 2 } \right| $$
    and
    $$\left| { z }_{ 2 }-3-4i \right| \ge \left| { z }_{ 2 } \right| -\left| 3+4i \right| $$
    $$ \left| { z }_{ 2 }-3-4i \right| \ge \left| { z }_{ 2 } \right| -\sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } \left\{ \left| a+bi \right|  \right\} =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \\ 5\ge \left| { z }_{ 2 } \right| -5\\ \left| { z }_{ 2 } \right| \ge 10$$
     for minimum value.$${ z }_{ 2 }=10$$
    $$ \therefore $$minimum value of $$\left| { z }_{ 1 }-{ z }_{ 2 } \right| \ge \left| { z }_{ 1 } \right| -\left| { z }_{ 2 } \right| \\ \left| { z }_{ 1 }-{ z }_{ 2 } \right| \ge 12-10\\ \left| { z }_{ 1 }-{ z }_{ 2 } \right| \ge 2$$
     Hence the minimum value of $$\left| { z }_{ 1 } \right| -\left| { z }_{ 2 } \right| =2$$
  • Question 6
    1 / -0
    If $$\displaystyle \displaystyle\ |z_{1}-1|<1, |z_{2}-2|<2, |z_{3}-3|<3$$ then $$\displaystyle\ |z_{1}+z_{2}+z_{3}|$$
    Solution
    Given the conditions in the question, the maximum values of $$z_1, z_2,z_3$$ are 2, 4 and 6 respectively.
    Thus, the maximum value of $$|z_1 + z_2 + z_3|$$ becomes 12 when all the values are maximum simultaneously.
    So, $$|z_1 + z_2 + z_3|$$ is less than 12.
  • Question 7
    1 / -0
    Let $$z$$ be a complex number of constant modulus such that $$\displaystyle\ z^{2}$$ is purely imaginary then the number of possible values of z is 
    Solution
    Let $$z=x+iy$$
    $$z^{2}$$ is purely imaginary
    $$z^{2}=x^{2}-y^{2}+2xyi$$
    $$x=\pm y$$
    so 4 pair can possible for constant modulus.
    $$(x,y),(-x,-y),(x,-y),(-x,y)$$
  • Question 8
    1 / -0
    If z is a complex number, then find the minimum value of $$\left|z\right| + \left|z - 1\right| + \left|2z - 3\right|.$$
    Solution
    $$E = \left|z\right| + \left|z - 1\right| + \left|2z - 3\right|
    = \left|z\right| + \left|z-1\right| + \left|3-2z\right| \ge \left|z + z - 1+ 3 - 2z\right| = 2$$
    $$\therefore, \left|z\right| + \left|z - 1\right| + \left|2z - 3\right| \ge 2$$
    Therefore, minimum value is 2.

    Ans: B
  • Question 9
    1 / -0
    Find the minimum value of $$|z-1|$$ if $$\left|\left|z - 3\right| - \left|z + 1\right|\right| = 2$$.
    Solution
    We know that,
    $$|z_1+z_2|⩽||z_1|+|z_2||$$

    Therefore,
    $$2 = \left|\left|z - 3\right| - \left|z + 1\right|\right| \le \left|(z-3) + (z+1)\right|$$
    $$\Rightarrow \left|z - 1\right|  \ge 1$$

    Ans: B 
  • Question 10
    1 / -0
    If $$\left|z_1 - 1\right| \le 1, \left|z_2 - 2\right| \le 2, \left|z_3 - 3\right| \le 3$$, then find the greatest value of $$\left|z_1 +  z_2 + z_3\right|$$.
    Solution
    Given, $$\left|z_1 +  z_2 + z_3\right|$$
    $$ = \left|(z_1 - 1) + (z_2 - 2) + (z_3 - 3) + 6\right| \le \left|z_1 - 1\right| + \left|z_2\right| + \left|z_3 - 3\right| + 6 \le 1 + 2 + 3 + 6 = 12$$.
    Hence, the greatest value is 12 

    Ans: D
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now