Self Studies

Number Theory Test 21

Result Self Studies

Number Theory Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if $$\displaystyle\ z=1+i\ \tan \alpha $$, where $$\displaystyle\ \pi < \alpha < \frac{3\pi }{2}$$ is $$|z|$$ is equal to 
    Solution
    $$z=1+i\tan\alpha$$
    $$\Rightarrow |z| =\sqrt{1+\tan^2\alpha}=\sqrt{\sec^2\alpha}=|\sec\alpha|$$
    Now we know that, modulus of any complex number is always non-zero
    and it is given that, alpha lies in third quadrant in which $$\sec\alpha <0$$
    Hence $$|z|=-\sec\alpha>0$$
    Hence option 'B' is correct choice.
  • Question 2
    1 / -0
    For a complex number z, the minimum value of $$\displaystyle\ |z| + |z-2|$$ is 
    Solution
    The question is infact asking the distance of an arbitrary point z from the origin and a point on the real axis, (2, 0).
    Thus, the minimum distance will be when z is also on the real axis between the two points and thus the minimum distance comes out to be 2 units.
  • Question 3
    1 / -0
    The value of the sum $$\displaystyle\ \sum _{n=1}^{13}\left ( i^{n}+i^{n+1} \right ) $$, where $$\displaystyle\ i=\sqrt{-1} $$
    Solution
    $$\sum (i^n+i^{n+1})=i+2(i^2+i^3+i^4.........i^{13})+i^{14}$$

    $$=i+2(0)-1$$.........................($$i^2=-1,i^3=-i,i^4=1$$)

    $$=i-1$$
  • Question 4
    1 / -0
    The complex number which satisfies the equation $$z+\sqrt { 2 } \left| z+1 \right| +i=0$$ is
    Solution
    Since $$z+\sqrt { 2 } \left| z+1 \right| +i=0$$

    $$\therefore x+i\left( y+1 \right) +\sqrt { 2 } \left| x+iy+1 \right| =0$$

    By comparing real and imaginary parts

    $$\Rightarrow y+1=0$$    $$(\because \left| x+iy+1 \right| $$ is real $$)$$

    $$\Rightarrow y=-1$$

    $$ \therefore x+\sqrt { 2 } \left| x-i+1 \right| =0$$

    $$ \Rightarrow { x }^{ 2 }=2\left( { \left( x+1 \right)  }^{ 2 }+1 \right) =2\left( { x }^{ 2 }+2x+2 \right) $$

    $$ \Rightarrow { x }^{ 2 }+4x+4=0\Rightarrow { \left( x+2 \right)  }^{ 2 }=0$$

    $$\Rightarrow x=-2$$

    $$\therefore z=-2-i$$
  • Question 5
    1 / -0
    If $$z$$ be a complex number, then the minimum value of $$\left | z-7 \right |+\left | z \right |$$ is
    Solution
    $$\left | z-7 \right |$$ implies distance between $$(x,y)$$ and $$(7,0)$$.
    $$\left | z\right |$$ means distance between $$(x,y)$$ and $$(0,0)$$
    Minimum distance would be straight line between $$(0,0)$$ and $$(7,0)$$ which is $$7$$.
  • Question 6
    1 / -0
    If $$\displaystyle z= 1+i\sqrt{3}$$,then $$\displaystyle z^{6}$$ equals
    Solution
    $$\displaystyle z= 1+i\sqrt{3}$$
    $$\displaystyle z^{6}= (1+\sqrt{3})^{6}$$ using Binomial Theorem.
    $$\displaystyle = ^{6}\:C_{0}+^{6}\:C_{1}\:(i\sqrt{3})+^{6}\:C_{2}(i\sqrt{3})^{2}+^{6}\:C_{3}(i\sqrt{3})^{3}+^{6}\:C_{4}(i\sqrt{3})^{4}+^{6}\:C_{5}(i\sqrt{3})^{5}+^{6}\:C_{6}\:(i\sqrt{3})^{6}\:$$
    $$\displaystyle = ^{6}\:C_{0}+^{6}C_{2}(3)+^{6}C_{4}(9)-^{6}C_{6}(27)+i\sqrt{3}(^{6}C_{1}-3^{6}C_{3}+9^{6}C_{5})$$
    $$\displaystyle = (1-15\times 3+135-27)+i\sqrt{3}(60-60)$$
    $$\displaystyle = (136-72)+i\sqrt{3}(0)= 64$$ 
  • Question 7
    1 / -0
    The locus of $$\displaystyle z= x+iy$$ which satisfying the inequality $$\displaystyle \log_{1/2}\left | z-1 \right |> \log_{1/2}\left | z-i \right |$$ is given by
    Solution
    $$log_{0.5}|z-1|>log_{0.5}|z-i|$$
    $$-log_{2}|z-1|>-log_{2}|z-i|$$
    $$log_{2}|z-1|<log_{2}|z-i|$$
    Hence
    $$|z-1|<|z-i|$$
    Now 
    Let $$z=x+iy$$
    Hence by squaring both sides
    $$(x-1)^{2}+y^{2}<x^{2}+(y-1)^{2}$$
    $$(2y-1)<(2x-1)$$
    $$2(y-x)<0$$
    $$y-x<0$$
    Or 
    $$x-y>0$$
  • Question 8
    1 / -0
    If$$\displaystyle\ z_{1}\neq-z_{2}$$ and $$\displaystyle\ |z_{1}+z_{2}|=\left | \frac{1}{z_{1}}+\frac{1}{z_{2}} \right |$$ then
    Solution
    Let 
    $$z_{1}=x_{1}+iy_{1}$$
    $$z_{2}=x_{2}+iy_{2}$$
    Now 
    $$z_{1}+z_{2}=(x_{1}+x_{2})+i(y_{1}+y_{2})$$
    $$\dfrac{1}{z_{1}}+\dfrac{1}{z_{2}}$$
    $$=\bar{z_{1}}+\bar{z_{2}}$$
    $$=(x_{1}+x_{2})-i(y_{1}+y_{2})$$.
    Now 
    $$|z_{1}+z_{2}|$$
    $$=\sqrt{(x_{2}+x_{1})^2+(y_{2}+y_1)^{2}}$$
    And 
    $$|\dfrac{1}{z_{1}}+\dfrac{1}{z_{2}}|$$
    $$=|(x_{1}+x_{2})-i(y_{1}+y_{2})|$$
    $$=\sqrt{(x_{2}+x_{1})^2+(y_{2}+y_1)^{2}}$$
    Hence
    $$|z_{1}+z_{2}|=|\dfrac{1}{z_{1}}+\dfrac{1}{z_{2}}|$$ for all values of $$z_{1}$$ and $$z_{2}$$.
  • Question 9
    1 / -0
    If $$\displaystyle z=1+i\cot\alpha,-\frac{\pi}{2}<\alpha<0,$$ then $$|z|$$ is equal to 
    Solution
    $$z=1+i\cot\alpha$$
    $$\Rightarrow |z|=\sqrt{1+\cot^2\alpha}=\sqrt{co\sec^2\alpha}$$
    $$=|co\sec\alpha|=-co\sec\alpha,$$ as $$-\pi/2<\alpha<0$$
  • Question 10
    1 / -0
    If $$\displaystyle u_{i}=1-\frac{1}{i}$$ then $$\displaystyle u_{2}\cdot u_{3}\cdot ... \cdot u_{n}$$ is equal to 
    Solution
    $$u_i = 1-\cfrac{1}{i}=\cfrac{i-1}{i}$$, here  $$i$$ is not a complex number
    $$\displaystyle \therefore u_2.u_3...........u_{n-1}.u_n = \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{n-2}{n-1}.\frac{n-1}{n} = \frac{1}{n}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now