Self Studies

Number Theory Test 22

Result Self Studies

Number Theory Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of non-zero integral solution of the equation $$ \left | \sqrt{3}+i \right |^{x}= 2^{x} $$
    Solution
    Let $$z=\sqrt{3}+i$$

    Hence $$|z|$$

    $$=|\sqrt{3}+i|$$

    $$=\sqrt{(\sqrt{3})^{2}+1}$$

    $$=\sqrt{4}$$

    $$=2$$

    So, the left-hand side and right-hand side of the equation become equal.
    Hence the above equation has infinitely many solutions.
  • Question 2
    1 / -0
    If $$z=4+i\sqrt7$$, then value of $$z^3-4z^2-9z+91$$ equals
    Solution
    We have, 
    $$z-4 = i\sqrt 7 $$
    $$z^2 - 8z  = -23 $$

    $$z^3 -4z^2-9z+91 $$
    $$= z(z^2-8z) + 4(z^2-8z) +23z +91 $$
    $$ =-23z  -92 +23z+91$$
    $$= -1$$ 
  • Question 3
    1 / -0
    Write all the composite numbers between $$10$$ and $$35.$$
    Solution
    All composite numbers between $$ 10 $$ and $$ 35 $$ are $$ 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33 $$ and $$ 34. $$
  • Question 4
    1 / -0
    $$\displaystyle \left [ \left ( \cos \theta +i \sin \theta \right )\left ( \cos \theta -i\sin \theta  \right ) \right ]^{-1}$$
    Solution
    $$\displaystyle \left [ \left ( \cos \theta +i \sin \theta \right )\left ( \cos \theta -i\sin \theta  \right ) \right ]^{-1}$$
    $$\displaystyle =\left ( \cos ^{2}\theta -i^{2}\sin ^{2}\theta  \right )^{-1}$$
    $$\displaystyle =\left ( \cos ^{2}\theta +\sin ^{2}\theta  \right )^{-1}=1.$$
    Alt.$$\displaystyle \left ( e^{i\theta } .e^{-i\theta }\right )^{-1}=1$$

    Ans: B
  • Question 5
    1 / -0
    If $$\displaystyle \log _{ \sqrt { 3 }  }{ \left( \frac { { \left| z \right|  }^{ 2 }-\left| z \right| +1 }{ 2+\left| z \right|  }  \right)  } <2$$, then the locus of $$z$$ is 
    Solution
    $$\displaystyle \log _{ \sqrt { 3 }  }{ \left( \frac { { \left| z \right|  }^{ 2 }-\left| z \right| +1 }{ 2+\left| z \right|  }  \right)  } <2$$
    $$\displaystyle\Rightarrow\frac { { \left| z \right|  }^{ 2 }-\left| z \right| +1 }{ 2+\left| z \right|  } <{ \left( \sqrt { 3 }  \right)  }^{ 2 }$$
    $$\Rightarrow { \left| z \right|  }^{ 2 }-\left| z \right| +1<6+3\left| z \right| $$
    $$\Rightarrow { \left| z \right|  }^{ 2 }-4\left| z \right| -5<0$$
    $$\Rightarrow \left( \left| z \right| -5 \right) \left( \left| z \right| +1 \right) <0$$
    $$\Rightarrow \left| z \right| -5<0,$$ 
    since $$\left| z \right| +1>0\Rightarrow \left| z \right| <5.$$
  • Question 6
    1 / -0
    Solve:
    $$\displaystyle \left ( x+iy \right )\left ( 2-3i \right )= 4+i$$
    Solution
    Given, $$\displaystyle \left ( x+iy \right )\left ( 2-3i \right )= 4+i$$

    $$\displaystyle \left ( 2x+3y \right )+i\left ( -3x+2y \right )= 4+i.$$

    Equating real and imaginary parts,

    $$\displaystyle 2x+3y= 4, -3x+2y= 1.$$

    Solving these, we get

    $$\displaystyle x= \left ( \dfrac {5}{13} \right ), y= \left (\dfrac {14}{13} \right ).$$

    Ans: B
  • Question 7
    1 / -0
    Solve : $$(2-\sqrt{-100})(1+\sqrt{-36})$$
    Solution
    $$(2-\sqrt{-100})(1+\sqrt{-36})$$

    $$=(2-10i)(1+6i)$$

    $$=2+12i-10i+60$$

    $$=62+2i$$
  • Question 8
    1 / -0
    If $$Re(a), \space Re(b) > 0$$, and $$x = |a - b| - |\bar{a} + b|$$, then
    Solution
    Lets take $$a=a_{1}+ia_{2}, b=b_{1}+ib_{2}$$
    $$x=\left | (a_{1}+ia_{2})-(b_{1}+ib_{2})\right |+\left | (a_{1}-ia_{2})+(b_{1}+ib_{2}) \right |$$
    So we can see from above equation
    $$\left | \overline{a}+b \right |>\left | a-b \right |$$
    Hence $$x<0$$
  • Question 9
    1 / -0
    If $$z = re^{i\theta}$$, then the value of $$|e^{iz}|$$ is equal to
    Solution
    Ginen,
    $$ z=r{ e }^{ i\theta  }$$
    To find$$ \left| { e }^{ iz } \right| $$
     solution, 
    for given,$$z=r{ e }^{ i\theta  }\\ z=r(\cos\theta +i\sin\theta )\left\{ { e }^{ i\theta  }=(\cos\theta +i\sin\theta ) \right\} \\ iz=ir(\cos\theta +i\sin\theta )\\ iz=r(i\cos\theta +{ i }^{ 2 }\sin\theta )\\ iz=r(-\sin\theta +i\cos\theta )\\ iz=-r\sin\theta +ir\cos\theta \\ { e }^{ iz }={ e }^{ -r\sin\theta +ir\cos\theta  }\\ \left| { e }^{ iz } \right| =\left| { e }^{ -r\sin\theta  } \right| \left| { e }^{ ir\cos\theta  } \right| $$
     We know that$$ \left| { e }^{ iz } \right| =1\\ \therefore \left| { e }^{ iz } \right| =\left| { e }^{ -r\sin\theta  } \right| \longrightarrow \{ always\quad positive\} \\ { e }^{ iz }={ e }^{ -r\sin\theta  }$$
  • Question 10
    1 / -0
    Find the modulus and amplitude of $$-2i$$
    Solution
    $$z=-2i$$            $$|z|=2$$

    $$=2(-i)$$

    $$=2e^{i\frac{-\pi}{2}}$$

    $$=|z|(e^{i\arg(z)})$$

    Hence

    $$|z|=2$$ and $$arg(z)=\dfrac{-\pi}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now