Self Studies

Number Theory Test 23

Result Self Studies

Number Theory Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the modulus and amplitude of $$-2 + 2 \sqrt 3i$$
    Solution
    Given $$z=-2+2\sqrt{3}i$$
    Hence, $$|z|=2\sqrt{1+3}\ \Rightarrow 2\sqrt{4}$$
    $$\Rightarrow 2\times2=4$$
    And let $$\alpha$$ be the argument of the complex number.
    Then
    $$tan\alpha=-\sqrt{3}$$
    Now $$Re(z)<0$$ and $$Im(z)>0$$
    $$\therefore $$  the number lies in the II quadrant 
    Hence,
    $$\alpha=\pi-\dfrac{\pi}{3}$$

    $$=\dfrac{2\pi}{3}$$
  • Question 2
    1 / -0
    The inequality $$|z-4| < |z-2|$$ represents the region given by 
    Solution
    Let, $$z=x+iy$$

    Putting in the given inequality,

    $$|(x-4)-iy|<|(x-2)+iy|$$

    $$\Rightarrow \sqrt{(x-4)^2+y^2}<\sqrt{(x-2)^2+y^2}$$

    squaring both sides,

    $$\Rightarrow (x-4)^2+y^2<(x-2)^2+y^2$$

    $$\Rightarrow -8x+16<-4x+4$$

    $$\Rightarrow 4x>12\Rightarrow x>3\Rightarrow \text{Re(z)}>3$$
  • Question 3
    1 / -0
    Find the modulus and amplitude of $$-\sqrt 3-i$$
    Solution
    $$z=-\sqrt{3}-i$$    $$|z|=2$$

    $$=2(\dfrac{-\sqrt{3}-i}{2})$$

    $$=2e^{i(\frac{\pi}{6}-\pi)}$$

    $$=2e^{i\frac{-5\pi}{6}}$$

    $$=|z|.e^{iarg(z)}$$

    Hence

    $$|z|=2$$ and $$arg(z)=\dfrac{-5\pi}{6}$$.
  • Question 4
    1 / -0
    (i) Every prime number is odd.
    (ii) The product of any two prime numbers is odd.
    Which of the above statements(s) is/are correct? 
  • Question 5
    1 / -0
    Find the value of $$x^3 + 7x^2 -x + 16$$, where $$x = 1 + 2i$$
    Solution
    $$f\left(x\right)={x}^{3}+7{x}^{2}-x+16$$
    $$f(1+2i)=(1+2i)^3+7(1+2i)^2-(1+2i)+16$$
    $$=\left[1+8{i}^{3}+6i\left(1+2i\right)\right]+7\left[1+4{i}^{2}+4i\right]-1-2i+16$$
    $$=\left[1-8i+6i-12\right]+7\left[1-4+4i\right]-2i+15$$
    $$=\left[-11-2i\right]+7\left[4i-3\right]-2i+15$$
    $$=-11-2i+28i-21-2i+15$$
    $$=\left(-32+15\right)+24i$$
    $$=-17+24i$$

  • Question 6
    1 / -0
    Consider the following statements:
    A. The sum of two prime numbers is a prime number. 
    B. The product of two prime numbers is a prime number. 
    Which of these statements is/are correct ?
    Solution
    Neither the sum nor the product of two prime numbers is a prime number
    Eg.$$3+5=8 $$ not a prime number.
    $$3\times 5=15 $$ not a prime number.
  • Question 7
    1 / -0
    Which one of the following is the largest prime number of three digits?
    Solution
    There are two numbers $$997$$ and $$991$$ are prime numbers out of given numbers.

    $$\therefore  $$ largest prime no. is $$997$$

    Option $$A$$ is correct.
  • Question 8
    1 / -0
    $$(1 + i)^8 + (1 -i)^8 =$$
    Solution
    $${ \left( 1+i \right)  }^{ 8 }+{ \left( 1-i \right)  }^{ 8 }$$
    $$\Rightarrow { \left( 1+i \right)  }^{ 8 }={ \left[ { { \left( 1+i \right)  }^{ 2 } } \right]  }^{ 4 }={ \left[ { 1+2i+{ i }^{ 2 } } \right]  }^{ 4 }={ \left[ { 1+2i-1 } \right]  }^{ 4 }$$
                         $$={ \left[ { { \left( 2i \right)  }^{ 2 } } \right]  }^{ 2 }$$
                         $$={ \left( -4 \right)  }^{ 2 }$$
                         $$=16$$

    Similarely $${ \left( 1-i \right)  }^{ 8 }=16$$

    $$\therefore { \left( 1+i \right)  }^{ 8 }+{ \left( 1-i \right)  }^{ 8 }$$

    $$=16+16$$

    $$=32.$$

    Hence, the answer is $$32.$$
  • Question 9
    1 / -0
    A student was asked to find the sum of all the prime numbers between $$10$$ and $$40.$$He found the sum as $$180.$$Which of the following statements is true?
    Solution
    Prime numbers between $$10$$ and $$40$$ are $$11,13,17,19,23,29,31,37$$
    Sum of these prime numbers $$= 180$$
    $$\therefore$$ Option $$D$$ is correct.
  • Question 10
    1 / -0
    Find the value of: $$i^2 + i^4 + i^6$$ +..... upto $$(2n +1)$$ terms.
    Solution
    $$i^2$$ + $$i^4$$ + $$i^6$$ + ...upto $$(2n + 1 )$$ terms

    $$=(-1 +1)+ (-1 +1)+( -1 + $$ .....upto $$(2n +1))$$terms $$\Rightarrow$$ (odd terms)

    $$= 0+ 0 + ....-1$$

    $$= -1$$

    Hence, option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now