Self Studies

Number Theory Test 24

Result Self Studies

Number Theory Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following statement is true?
    Solution
    $${\because}$$ All the given statements are false.
  • Question 2
    1 / -0
    $$i^n + i^{n + 1} + i^{n + 2}+ i^{n + 3} (n   \in   N) $$ is equal to
    Solution

    $$\textbf{Step-1: Expanding the terms}$$

                    $${{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}$$

                    $$= {{i}^{n}}+{{i}^{n}}.i+{{i}^{n}}.{{i}^{2}}+{{i}^{n}}.{{i}^{3}}$$

    $$\textbf{Step-2: Taking } \mathbf{{i}^{n}} \textbf{ common}$$

                    $$= {{i}^{n}}(1+i+{{i}^{2}}+{{i}^{3}})$$

                    $$= {{i}^{n}}(1+i-1-i) $$          $$\mathbf{[\because {{i}^{2}}=-1,{{i}^{3}}=-i]}$$

                    $$= {{i}^{n}}(0)=0$$

    $$\textbf{Hence the correct option is (C) 0}$$

  • Question 3
    1 / -0
    The number $$10$$ has four factors: $$1,2, 5$$ and $$10$$. The table below lists the number of factors for some numbers
    NumbersNumber of factors
    $$21$$$$4$$
    $$23$$$$2$$
    $$25$$$$3$$
    $$27$$$$4$$
    $$29$$$$2$$
    From this, we can say that the number of prime numbers between $$20$$ and $$30$$ is:
    Solution
    We know that prime numbers have two factors that is $$1$$ and number itself.
    In the given table only $$23$$ and $$29$$ have $$2$$ factors so there will be two prime numbers that is $$23$$ and $$29$$ so correct answer will be option B
  • Question 4
    1 / -0
    The modulus of (1 + i) (1 + 2i) (1 + 3i) is equal to
    Solution
    $$|(1 + i) (1 + 2i) (1 + 3i)|$$ = $$|1+i||1+2i||1+3i|$$     ($$\because |Z_{1}Z_{2}|=|Z_{1}||Z_{2}|$$)
    $$=\sqrt {2}\cdot\sqrt {5}\cdot\sqrt {10}$$
    $$\therefore  |(1 + i) (1 + 2i) (1 + 3i)|=10$$
    Hence, option D.

  • Question 5
    1 / -0
    If $$z_1, z_2, \varepsilon C$$ are such that $$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$ then $$\displaystyle \frac{z_1}{z_2}$$ is
    Solution
    $$\because |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$

    $$\Rightarrow |z_1|^2 + |z_2|^2 + 2 R (z_1 \bar z_2) = |z_1|^2 + |z_2|^2$$

    $$\Rightarrow R(z_1 \bar z_2) = 0 \Rightarrow z_1 \bar z_2$$ is imaginary

    Now $$\displaystyle \frac{z_1}{z_2} = \frac{z_1 \bar z_2}{z_2 \bar z_2} = \frac{\text{imaginary}}{|z_2|^2} = $$ imaginary
  • Question 6
    1 / -0
    The value of $$(x - 1) \displaystyle \left ( x + \frac{1}{2} - \frac{\sqrt{3}}{2} i \right )\left ( x + \frac{1}{2} + \frac{\sqrt 3}{2} i \right )$$ is
    Solution
    $$\left( x-1 \right) \left( x+\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 }  }{ 2 } i \right) \left( x+\dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 }  }{ 2 } i \right) $$
    $$=\left( x-1 \right) \left[ \left( x+\dfrac { 1 }{ 2 }  \right) -\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right)  \right] \left[ \left( x+\dfrac { 1 }{ 2 }  \right) +\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right)  \right] $$
    $$=\left( x-1 \right) \left[ \left( x+\dfrac { 1 }{ 2 }  \right) ^{ 2 }-\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right) ^{ 2 } \right] $$
    $$=\left( x-1 \right) \left[ { x }^{ 2 }+x+\dfrac { 1 }{ 4 } +\dfrac { 3 }{ 4 }  \right] $$
    $$=\left( x-1 \right) \left[ { x }^{ 2 }+x+1 \right] $$
    $$=x^3+x^2+x-x^2-x-1$$
    $$=x^3-1$$
    Hence, the answer is $$x^3-1.$$
  • Question 7
    1 / -0
    If z = x + iy and |z 1 + 2i | = | z + 1 2i |,then the locus of z is
    Solution
    We know that $$z=x+iy$$
    $$\Rightarrow \left| z-1+2i \right| =\left| z+1-2i \right| ,$$    locus of $$x=?$$
    $$\Rightarrow \left| x+iy-1+2i \right| =\left| x+iy+1-2i \right| $$
    $$\Rightarrow \left| \left( x-1 \right) +i\left( y+2 \right)  \right| =\left| \left( x+1 \right) +i\left( y-2 \right)  \right| $$
    $$\Rightarrow \sqrt { { \left( x-1 \right)  }^{ 2 }+{ \left( y+2 \right)  }^{ 2 } } =\sqrt { { \left( x+1 \right)  }^{ 2 }+{ \left( y-2 \right)  }^{ 2 } } $$
    $$\Rightarrow x^2-2x+1+y^2+4y+4=x^2+2x+1+y^2-4y+4$$
    $$\Rightarrow -2x+4y+5=2x-4y+5$$
    $$\Rightarrow 4x=8y$$
    $$\Rightarrow x=2y$$
    $$\therefore x-2y=0$$
    $$\therefore$$ The locus of $$z$$ is a straight line.
    Hence, the answer straight line.
  • Question 8
    1 / -0
    Modulus of $$\displaystyle \frac{cos \theta- isin\theta }{sin\theta - icos\theta} is$$
    Solution
    $$\displaystyle |\frac{\cos \theta- i\sin\theta }{\sin\theta - i\cos\theta}|$$ $$=\displaystyle \frac{|\cos \theta- i\sin\theta| }{|\sin\theta - i\cos\theta|}$$
    $$= \displaystyle \frac{\sin^2 \theta +\cos^2 \theta}{\sin^2 \theta +\cos^2 \theta}=1$$
    $$\therefore \displaystyle |\frac{\cos \theta- i\sin\theta }{\sin\theta - i\cos\theta}|=1$$
    Hence, option D.

  • Question 9
    1 / -0
    If $$z_1$$ and $$z_2$$ are any two complex numbers, then $$\displaystyle \frac{z_2 + z_1}{||z_2| - |z_1||}$$ is
    Solution

  • Question 10
    1 / -0
    Number of complex numbers $$z$$ satisfying $$\left| 2z \right| =\left| 2z-1 \right| =\left| 2z+1 \right| $$ is equal to-
    Solution
    Let the complex number $$z$$ be $$x+iy$$
    Given that $$|2z|=|2z-1|$$
    $$\Rightarrow 2\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =\sqrt { { (2x-1) }^{ 2 }+{ y }^{ 2 } } $$
    $$\Rightarrow 3{y}^{2}+4x=1$$
    Given that $$|2z|=|2z+1|$$
    $$\Rightarrow 2\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =\sqrt { { (2x+1) }^{ 2 }+{ y }^{ 2 } } $$
    $$\Rightarrow 3{y}^{2}-4x=1$$
    By solving above two equation , we get $$x=0 , y=\pm\frac{1}{\sqrt3}$$
    But this point doesnt satisfy the equation $$|2z-1|=|2z+1|$$
    Therefore the number of points which satisfies the equation $$|2z|=|2z+1|=|2z-1|$$ is $$0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now