Self Studies

Number Theory Test 25

Result Self Studies

Number Theory Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The locus represented by $$|z -1|=|z + i|$$ is
    Solution
    Given,
    $$ |z−1|=|z+i|$$
     To find the locus of the equation.
     Solution,
     Given that,
    $$|z−1|=|z+i|$$
     Say $$x=x+iy$$
    $$ \left| x+iy-1 \right| =\left| x+iy+1 \right| $$
    $$ \left| (x-1)+iy \right| =\left| x+i(y+1) \right| $$
    $$\Rightarrow \sqrt{(x-1)^2+y^2}=\sqrt{x^2+(y+1)^2}$$
    Squaring both sides,
    $$x^2+1-2x+y^2=x^2+y^2+1+2y$$
    $$\Rightarrow 1-2x=2y+1$$
    $$\therefore \ x+y=0$$  [line passes through origin]
    Hence, C is the right answer

  • Question 2
    1 / -0
    Solve:
     $$\displaystyle \left|(1 + i)\frac{(2+i)}{(3 + i)}\right| $$
    Solution
    Given, $$\displaystyle |(1 + i)\frac{(2+i)}{(3 + i)}| $$=$$\displaystyle |(1 + i)|\frac{|(2+i)|}{|(3 + i)|}$$ 

    Since, $$|Z_{1}Z_{2}|=|Z_{1}||Z_{2}|$$ and $$\displaystyle|\frac{Z_{1}}{Z_{2}}|=\frac{|Z_{1}|}{|Z_{2}|}$$   

    $$=\displaystyle \sqrt{2}\cdot \frac{\sqrt{5}}{\sqrt{10}}=1$$

    $$\therefore \displaystyle |(1 + i)\frac{(2+i)}{(3 + i)}| = 1$$ 

    Hence, option C.
  • Question 3
    1 / -0
    If $$\displaystyle z= (i)^{(i)^{(i)}}$$ where $$ i = \sqrt{-1}$$, then $$z$$ is equal to
    Solution
    $$Z=(i)^{(i)^{(i)}}$$
    $$i=e^{i\pi/2}$$
    $$i^i=e^{i.(i\pi/2)}=e^{-\pi/2}$$
    $$i^{i^i}=e^{i(-\pi/2)}\\ \implies \cos(\pi/2)-i\sin(\pi/2)\\ \implies 0-i=-i$$
  • Question 4
    1 / -0
    If x and y are real then which one of the following is true
    Solution
    We know that $$|x+y|\leq |x|+|y|$$
    $$\Rightarrow |x-y+y|\leq |x-y|+|y|$$
    $$\Rightarrow |x|-|y|\leq |x-y|$$
    $$\therefore |x-y|\geq |x|-|y|$$
    Hence, option C.

  • Question 5
    1 / -0
    If $$|z -2 + i| = |z-3-i|$$, then the locus of z is
    Solution
    Given: $$ |z-2+i|=|z-3-i|$$

    To find the locus of: $$ z$$.

    Solution:

    Let, $$z=x+iy$$

    $$|z-2+i|=|z-3-i|$$

    $$|x+iy-2+i|=|x+iy-3-i|$$

    $$ |(x-2)+i(y+1)|=|(x-3)+i(y-1)|$$

    On squaring both sides, we get

    $$ \Rightarrow { \left( \sqrt { { (x-2) }^{ 2 }+{ (y+1) }^{ 2 } }  \right)  }^{ 2 }={ \left( \sqrt { { (x-3) }^{ 2 }+{ (y-1) }^{ 2 } }  \right)  }^{ 2 } \quad ...\left\{ |x+iy|=\sqrt { { x }^{ 2 }+{ y }^{ 2 } }  \right\} $$

    $$ \Rightarrow { x }^{ 2 }+4-4x+{ y }^{ 2 }+1+2y$$$$ = { x }^{ 2 }+9-6x+{ y }^{ 2 }+1-2y$$

    $$ \Rightarrow 2x+4y-5=0$$
  • Question 6
    1 / -0
    Which of the following number is composite?
    Solution
    A composite number is a positive nteger that has at least one positive divisor other than one and number itself.
    Also all the even numbers are composite.
    Hence, answer will be B.
  • Question 7
    1 / -0
    Let $$\displaystyle \left| Z_{r}-r\right| \leq r,\forall r=1,2,3,.......n.$$ Then $$\displaystyle \left| \sum_{r=1}^{n} Z_{r} \right| $$ is less than
    Solution
    $$|Z_r - r| \le r$$

    $$\therefore Z_r \le 2r$$

    or $$|Z_r| \le 2r$$

    also $$\sum_{r=1}^n |Z_r| \le 2 \sum_{r=1}^n r$$

    also $$|\sum_{r=1}^n Z_r| \le \sum_{r=1}^n |Z_r|$$    $$\{$$ extending triangle inequality $$\}$$

    $$\therefore |\sum_{r=1}^n Z_r| \le 2\times \dfrac{n(n+1)}{2}$$

    $$\therefore |\sum_{r=1}^n Z_r| \le  {n(n+1)}$$

    $$\therefore$$ option C is correct.
  • Question 8
    1 / -0
    If $$z_1, z_2$$ and $$z_3$$ are complex numbers such that $$|z_1| = |z_2| = |z_3| = \left | \displaystyle \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right | = 1,$$ then $$|z_1 + z_2 + z_3|$$ is
    Solution
    $$|z_1| = |z_2| = |z_3| = 1$$ (given)
    Now $$|z_1| = 1        \Rightarrow |z_r|^2 = 1$$
    $$\Rightarrow z_1 \bar z_1 = 1$$
    Similarly $$z_2 \bar z_2 = 1, z_3 \bar z_3 = 1$$
    Now $$\displaystyle \left | \dfrac{1}{z_1} + \dfrac{1}{z_2} + \dfrac{1}{z_3} \right | = 1$$
    $$\Rightarrow |\bar z_1 + \bar z_2 + \bar z_3| = 1$$
    $$\Rightarrow |\overline{z_1 + z_2 + z_3}| = 1 \Rightarrow |z_1 + z_2 + z_3| = 1$$
  • Question 9
    1 / -0
    Fill in the blanks.
    Every composite number can be expressed as a product of ____, and this factorization is unique except for the order in which the prime factors occur.
    Solution

  • Question 10
    1 / -0
    The number of composite number between $$101$$ and $$120$$ are 
    Solution
    A composite number is a positive integer that has atleast one positive divisor other than one or the number itself. In other words, a composite number is any integer greater than one that is not a prime number

    Now between $$101$$ and $$120,$$
    Numbers are
    $$102,104,105,106,108,110,111,112,114,115,116,117,118,119$$

    Total : $$14.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now