Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    If $${z}_{1},{z}_{2}$$ are two complex numbers and $$c>0$$ such that $${ \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+k{ \left| { z }_{ 2 } \right|  }^{ 2 },$$ then $$k=$$

  • Question 2
    1 / -0

    Find the product and write the answer in standard form.
    $$\left( 2-4i \right) \left( 3+7i \right) $$

  • Question 3
    1 / -0

    The product of $$(3-2i)$$ and $$\left(\dfrac { 5 }{ 2 } -4i\right)$$, if $$i=\sqrt { -1 } $$ , is:

  • Question 4
    1 / -0

    The resultant complex number when $$(4+6i)$$ is divided by $$(10-5i)$$ is

  • Question 5
    1 / -0

    Find the product. Write the answer in standard form.
    $$i\left( 6-2i \right) \left( 7-5i \right) $$

  • Question 6
    1 / -0

    Let $${ X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 } \le \dfrac { 1 }{ n }  \right\} $$ for all integers $$n\ge 1$$. Then, $$\displaystyle\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } $$ is

  • Question 7
    1 / -0

    The modulus of $$\dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } $$ is

  • Question 8
    1 / -0

    If $$A = (3 - 4i)$$ and $$B = (9 + ki)$$, where $$k$$ is a constant. 

    If $$AB - 15 = 60$$, then the value of $$k$$ is

  • Question 9
    1 / -0

    The simplest form of $$\sqrt {-18} \times \sqrt {-50}$$ is

  • Question 10
    1 / -0

    Simplify $$(2+8i)(1-4i)-(3-2i)(6+4i)$$

     (Note$$:i=\sqrt{-1}$$)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now