Self Studies

Number Theory Test 28

Result Self Studies

Number Theory Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the approximate magnitude of $$8 + 4i$$?
    Solution
    Magnitude of $$8+4i$$ is 
    $$=\sqrt { { 8 }^{ 2 }+{ 4 }^{ 2 } } $$
    $$=\sqrt { 64+16 } $$
    $$=\sqrt { 80 }$$
    $$ =8.94$$
  • Question 2
    1 / -0
    The real part of $${ \left( 1-\cos { \theta  } +i\sin { \theta  }  \right)  }^{ -1 }$$ is
    Solution
    Given that: $${ \left( 1-\cos { \theta  } +i\sin { \theta  }  \right)  }^{ -1 }=\dfrac{1}{1-\cos\theta+i\sin\theta}$$

    $$=\dfrac{1}{2\sin^2\frac{\theta}{2}+i\cdot 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}=\dfrac{1}{2\sin\frac{\theta}{2}}\cdot \dfrac{1}{\sin\frac{\theta}{2}+i\cos\frac{\theta}{2}}$$ 

    $$=\dfrac{1}{2\sin\frac{\theta}{2}}\cdot \dfrac{1}{\sin\frac{\theta}{2}+i\cos\frac{\theta}{2}}\cdot \dfrac{\sin\frac{\theta}{2}-i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}-i\cos\frac{\theta}{2}}$$, rationalize denominator 

    $$=\dfrac{1}{2\sin\frac{\theta}{2}}(\sin\frac{\theta}{2}-i\cos\frac{\theta}{2})$$

    $$=\dfrac{1}{2}-\dfrac{i}{2}\cot\frac{\theta}{2}$$

    The real part is $$\dfrac{1}{2}$$
  • Question 3
    1 / -0
    If $$z = \dfrac {(\sqrt {3} + i)^{3} (3i + 4)^{2}}{(8 + 6i)^{2}}$$, then $$|z|$$ is equal to
    Solution
    Uisng the identity $$|a+ib|=\sqrt{a^2+b^2}$$
    Since $$\bigg|\dfrac{z_1z_2}{z_3} \bigg|=\dfrac{|z_1||z_2|}{|z_3|}$$
    Therefore
    $$|z| = \bigg|\dfrac {(\sqrt {3} + i)^{3} (3i + 4)^{2}}{(8 + 6i)^{2}}\bigg|$$
    $$\quad =\dfrac{|(\sqrt 3+i)^3||(3i+4)^2|}{|(8+6i)^2|}$$
    $$\quad =\dfrac{|\sqrt 3+i|^3|3i+4|^2}{|8+6i|^2}$$
    $$\quad =\dfrac{2^3\cdot 5^2}{10^2}=2$$ 
  • Question 4
    1 / -0
    The value of $$(a+2i)(b-i)$$ is
    Solution
    The value of $$(a+2i)(b-i) $$
    $$=a(b-i)+2i(b-i)$$
    $$= ab-ai+2bi-2{i}^{2} $$
    $$= ab+(2b-a)i+2$$
  • Question 5
    1 / -0
    The expression $$\dfrac{3-4i}{5+3i}$$ is equivalent to
    Solution
    Given, $$\dfrac { 3-4i }{ 5+3i } $$
    Multiply and divide it with $$5-3i$$, we get 
    $$\dfrac { 3-4i }{ 5+3i } \times \dfrac { 5-3i }{ 5-3i } $$
    $$=\dfrac {(3-4i)(5-3i)}{5^2-(3i)^2}$$
    $$=\dfrac { 3-29i }{ 34 } $$
  • Question 6
    1 / -0
    The fraction $$\dfrac{1}{1+i}$$ is equivalent to
    Solution
    Given, $$\dfrac{1}{1+i}$$
    Multiply and divide it with $$1-i$$, we get 
    $$\dfrac{1}{1+i} \times \dfrac{1-i}{1-i} = \dfrac{1-i}{2}$$
  • Question 7
    1 / -0
    If $$(2 - i)\times(a - bi) = 2 + 9i$$, where i is the imaginary unit and a and b are real numbers, then a equals
    Solution
    Given, $$(2-i)(a-bi) = 2a-2bi-ai-b $$
    $$= (2a-b)+i(-a-2b)$$
    $$ = 2+9i$$
    By comparing, we get $$2a-b=2$$ and $$a+2b=-9$$
    By solving, we get $$a=-1$$ and $$b=-4$$
  • Question 8
    1 / -0
    Perform the indicated operations:
    $$(5+3i)(3-2i)$$
    Solution
    The value of $$(5+3i)(3-2i) $$
    $$=5(3-2i)+3i(3-2i)$$
    $$= 15-10i+9i-6{i}^{2} $$
    $$= 21-i$$
  • Question 9
    1 / -0
    If $$x + i  y = \dfrac{3}{2 + cos  \theta + i  sin  \theta}$$, then $$x^2 + y^2$$ is equal to
    Solution
    $$x + i   y = \dfrac{3}{2 + cos  \theta + i  sin  \theta} = \dfrac{3 (2 + cos \theta - i  sin  \theta)}{(2 + cos  \theta)^2 - i^2 sin^2 \theta}$$
    $$= \dfrac{3(2+cos \theta-i sin \theta)}{(2+cos \theta)^2+sin \theta}$$

    $$= \dfrac{6 + 3 cos \theta - 3 i   sin  \theta}{4 + cos^2 \theta + 4 cos \theta + sin^2 \theta}$$ 

    $$= \dfrac{6 + 3 cos \theta - 3 i sin  \theta}{5 + 4 cos \theta}$$

    $$= \left( \dfrac{6 + 3 cos \theta}{5 + 4 cos \theta} \right ) + \left( \dfrac{-3 sin \theta}{5 + 4 cos \theta} \right )$$
    On equating real and imaginary parts, we get
    $$x = \dfrac{3 (2 + cos \theta)}{5 + 4 cos \theta}$$
    and $$y = \dfrac{-3 sin \theta}{5 + 4 cos \theta}$$

    $$\therefore x^2 + y^2 = \dfrac{9 [4 + cos^2 \theta + 4 cos \theta + sin^2 \theta]}{(5 + 4 cos \theta)^2}$$

                      $$= \dfrac{9}{5 + 4 cos \theta} = 4 \left( \dfrac{6 + 3 cos \theta}{5 + 4 cos^2 \theta} \right ) - 3$$
                      $$= 4x - 3$$
    Hence, option B is correct.
  • Question 10
    1 / -0
    Let $$z = x + iy$$, where $$x$$ and $$y$$ are real. The points $$(x, y)$$ in the $$X-Y$$ plane for which $$\dfrac {z + i}{z - i}$$ is purely imaginary lie on
    Solution
    Let $$z = x + iy$$
    $$\therefore \dfrac {z + i}{(z - i)}=\dfrac{x+iy+i}{x+iy-i}$$ 
                       $$= \dfrac {(x + i(y + 1))}{(x - i(1 - y))}\times \dfrac {(x + i(1 - y))}{(x + i(1 - y))}$$ 
                       $$=\dfrac {x^{2} + (y^{2} - 1)+2ix}{x^{2} + (1 - y)^{2}} $$
    Since, $$\dfrac{z+i}{z-i}$$ should be purely imaginary
    $$\therefore Re\left (\dfrac {z + i}{z - i}\right ) = 0$$ 
    $$\implies \dfrac {x^{2} + (y^{2} - 1)}{x^{2} + (1 - y)^{2}} = 0$$ 
    $$\implies x^{2}+y^{2}-1=0$$
    $$\implies x^{2} + y^{2} = 1$$ which is the equation of a circle
    Hence, $$(x,y)$$ lie on a circle.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now